Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

CCTα

  • Sofia Nolasco
  • João Gonçalves
  • Helena Soares
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_550

Synonyms

 Cct1;  TCP-1

Historical Background

In the cell, the correct folding of many proteins depends on the function of preexisting ones known as molecular chaperones (for a review see Hartl and Hayer-Hartl 2009). These, were defined as proteins that bind to and stabilize an otherwise unstable conformation of another protein, and by controlling binding and release, facilitate its correct fate in vivo, be it folding, oligomeric assembly, transport to a particular subcellular compartment, or disposal by degradation. Molecular chaperones do not convey steric information specifying correct folding: instead, they prevent incorrect interactions within and between nonnative peptides, thus typically increasing the yield but not the rate of folding reactions.

Molecular chaperones are ubiquitous and comprise several protein families that are structurally unrelated (Hartl and Hayer-Hartl 2009). The Hsp70s and the Chaperonin families have been extensively studied. Hsp70homologs are widespread...

This is a preview of subscription content, log in to check access.

References

  1. Bakthavatsalam D, Soung RH, Tweardy DJ, Chiu W, Dixon RA, Woodside DG. Chaperonin-containing TCP-1 complex directly binds to the cytoplasmic domain of the LOX-1 receptor. FEBS Lett. 2014;588:2133–40.  https://doi.org/10.1016/j.febslet.2014.04.049.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brackley KI, Grantham J. Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation. Cell Stress Chaperones. 2009;14:23–31.  https://doi.org/10.1007/s12192-008-0057-x.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Dekker C, Stirling PC, McCormack EA, Filmore H, Paul A, Brost RL, Costanzo M, Boone C, Leroux MR, Willison KR. The interaction network of the chaperonin CCT. EMBO J. 2008;27:1827–39.  https://doi.org/10.1038/emboj.2008.108.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dun MD, Smith ND, Baker MA, Lin M, Aitken RJ, Nixon B. The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-oocyte interaction. J Biol Chem. 2011;286:36875–87.  https://doi.org/10.1074/jbc.M110.188888.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Freund A, Zhong FL, Venteicher AS, Meng Z, Veenstra TD, Frydman J, Artandi SE. Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell. 2014;159:1389–403.  https://doi.org/10.1016/j.cell.2014.10.059.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Gonçalves J, Nolasco S, Soares H. CCTalpha. AfCS Nat Molecule Pages. 2007;  https://doi.org/10.1038/mp.a003968.01.CrossRefGoogle Scholar
  7. Guest ST, Kratche ZR, Bollig-Fischer A, Haddad R, Ethier SP. Two members of the TRiC chaperonin complex, CCT2 and TCP1 are essential for survival of breast cancer cells and are linked to driving oncogenes. Exp Cell Res. 2015;332:223–35.  https://doi.org/10.1016/j.yexcr.2015.02.005.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hartl FU, Hayer-Hartl M. Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol. 2009;16:574–81.  https://doi.org/10.1038/nsmb.1591.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Huang R, Yu M, Li CY, Zhan YQ, Xu WX, Xu F, Ge CH, Li W, Yang XM. New insights into the functions and localization of nuclear CCT protein complex in K562 leukemia cells. Proteomics Clin Appl. 2012;6:467–75.  https://doi.org/10.1002/prca.201200009.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kalisman N, Schröder GF, Levitt M. The crystal structures of the eukaryotic chaperonin CCT reveal its functional partitioning. Structure. 2013;21:540–9.  https://doi.org/10.1016/j.str.2013.01.017.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kim S, Lee D, Lee J, Song H, Kim HJ, Kim KT. Vaccinia-related kinase 2 controls the stability of the eukaryotic chaperonin TRiC/CCT by inhibiting the deubiquitinating enzyme USP25. Mol Cell Biol. 2015;35:1754–62.  https://doi.org/10.1128/MCB.01325-14.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Llorca O, Smyth MG, Carrascosa JL, Willison KR, Radermacher M, Steinbacher S, Valpuesta JM. 3D reconstruction of the ATP-bound form of CCT reveals the asymmetric folding conformation of a type II chaperonin. Nat Struct Biol. 1999;6:639–42.PubMedCrossRefGoogle Scholar
  13. Llorca O, Martín-Benito J, Grantham J, Ritco-Vonsovici M, Willison KR, Carrascosa JL, Valpuesta JM.The ‘sequential allosteric ring’ mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin. EMBO J. 2001;20:4065–75.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Lundin VF, Leroux MR, Stirling PC. Quality control of cytoskeletal proteins and human disease. Trends Biochem Sci. 2010;35:288–97.PubMedCrossRefGoogle Scholar
  15. Mourão A, Christensen ST, Lorentzen E. The intraflagellar transport machinery in ciliary signaling. Curr Opin Struct Biol. 2016;41:98–108.  https://doi.org/10.1016/j.sbi.2016.06.009.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Muñoz IG, Yébenes H, Zhou M, Mesa P, Serna M, Park AY, Bragado-Nilsson E, Beloso A, de Cárcer G, Malumbres M, Robinson CV, Valpuesta JM, Montoya G. Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat Struct Mol Biol. 2011;18:14–9.  https://doi.org/10.1038/nsmb.1971.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Narayanan A, Pullepu D, Reddy PK, Uddin W, Kabir MA. Defects in protein folding machinery affect cell wall integrity and reduce ethanol tolerance in S. cerevisiae. Curr Microbiol. 2016;73:38–45.  https://doi.org/10.1007/s00284-016-1024-x.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Palumbo V, Pellacani C, Heesom KJ, Rogala KB, Deane CM, Mottier-Pavie V, Gatti M, Bonaccorsi S, Wakefield JG. Misato controls mitotic microtubule generation by stabilizing the TCP-1 tubulin chaperone complex. Curr Biol. 2015;25:1777–83.  https://doi.org/10.1016/j.cub.2015.05.033.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Pongtepaditep S, Limjindaporn T, Lertrit P, Srisawat C, Limwongse C. Polyglutamined expanded androgen receptor interacts with chaperonin CCT. Eur J Med Genet. 2012;55:599–604.  https://doi.org/10.1016/j.ejmg.2012.06.013.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Reissmann S, Joachimiak LA, Chen B, Meyer AS, Nguyen A, Frydman J. A gradient of ATP affinities generates an asymmetric power stroke driving the chaperoning TRIC/CCT folding cycle. Cell Rep. 2012;2:866–77.  https://doi.org/10.1016/j.celrep.2012.08.036.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Seixas C, Casalou C, Melo LV, Nolasco S, Brogueira P, Soares H. Subunits of the chaperonin CCT are associated with Tetrahymena microtubule structures and are involved in cilia biogenesis. Exp Cell Res. 2003;290:303–21.PubMedCrossRefGoogle Scholar
  22. Seixas C, Cruto T, Tavares A, Gaertig J, Soares H. CCTalpha and CCTdelta chaperonin subunits are essential and required for cilia assembly and maintenance in Tetrahymena. PLoS One. 2010;5:e10704.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Seo S, Baye LM, Schulz NP, Beck JS, Zhang Q, Slusarski DC, Sheffield VC. BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly. Proc Natl Acad Sci U S A. 2010;107:1488–93.  https://doi.org/10.1073/pnas.0910268107.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sinha S, Belcastro M, Datta P, Seo S, Sokolov M. Essential role of the chaperonin CCT in rod outer segment biogenesis. Invest Ophthalmol Vis Sci. 2014;55:3775–85.  https://doi.org/10.1167/iovs.14-13889.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Sontag EM, Joachimiak LA, Tan Z, Tomlinson A, Housman DE, Glabe CG, Potkin SG, Frydman J, Thompson LM. Exogenous delivery of chaperonin subunit fragment ApiCCT1 modulates mutant Huntingtin cellular phenotypes. Proc Natl Acad Sci USA. 2013;110:3077–82.  https://doi.org/10.1073/pnas.1222663110.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Tracy CM, Gray AJ, Cuéllar J, Shaw TS, Howlett AC, Taylor RM, Prince JT, Ahn NG, Valpuesta JM, Willardson BM. Programmed cell death protein 5 interacts with the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT) to regulate β-tubulin folding. J Biol Chem. 2014;289:4490–502.  https://doi.org/10.1074/jbc.M113.542159.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Valpuesta JM, Martín-Benito J, Gómez-Puertas P, Carrascosa JL, Willison KR. Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT. FEBS Lett. 2002;529:11–6.PubMedCrossRefGoogle Scholar
  28. Willardson BM, Howlett AC. Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell Signal. 2007;19:2417–27.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sofia Nolasco
    • 1
    • 2
    • 3
    • 4
  • João Gonçalves
    • 5
    • 6
  • Helena Soares
    • 1
    • 3
  1. 1.Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  2. 2.Instituto Gulbenkian de CiênciaOeirasPortugal
  3. 3.Escola Superior de Tecnologia da Saúde de LisboaLisboaPortugal
  4. 4.Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina VeterináriaUniversidade de LisboaLisboaPortugal
  5. 5.Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de LisboaLisboaPortugal
  6. 6.Lunenfeld-Tanenbaum Research InstituteTorontoCanada