Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Andrew A. PedenEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_548

Historical Background

The cytoplasm of all eukaryotic cells is organized into a complex set of membrane-bound organelles with defined protein and lipid composition. Proteins and lipids of the endocytic and exocytic pathways are transported between these compartments by small vesicles and tubules which pinch off from one compartment and fuse with another and so deliver their contents. The budding of vesicles and tubules from membranes is driven by the recruitment of coat protein complexes from the cytoplasm. Coat complexes have two main functions in this process: First, they select cargo proteins to be packaged into the vesicle, and second, they recruit accessory proteins that help deform the membrane into a bud and bind machinery required for vesicle fission.

In mammalian cells, there are five related adaptor protein (AP) complexes (AP-1 through 5) (Hirst et al. 2011). Each complex is localized to a specific post-Golgi compartment and is required for the transport of a defined set of...
This is a preview of subscription content, log in to check access.


  1. Azevedo C, Burton A, Ruiz-Mateos E, Marsh M, Saiardi A. Inositol pyrophosphate mediated pyrophosphorylation of AP3B1 regulates HIV-1 Gag release. Proc Natl Acad Sci USA. 2009;106(50):21161–6.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Badolato R, Parolini S. Novel insights from adaptor protein 3 complex deficiency. J Allergy Clin Immunol. 2007;120(4):735–41. quiz 42–3.PubMedCrossRefGoogle Scholar
  3. Baust T, Anitei M, Czupalla C, Parshyna I, Bourel L, Thiele C, et al. Protein networks supporting AP-3 function in targeting lysosomal membrane proteins. Mol Biol Cell. 2008;19(5):1942–51.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bonifacino JS, Traub LM. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem. 2003;72:395–447.PubMedCrossRefGoogle Scholar
  5. Craige B, Salazar G, Faundez V. Phosphatidylinositol-4-kinase type II alpha contains an AP-3-sorting motif and a kinase domain that are both required for endosome traffic. Mol Biol Cell. 2008;19(4):1415–26.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Danglot L, Galli T. What is the function of neuronal AP-3? Biol Cell. 2007;99(7):349–61.PubMedCrossRefGoogle Scholar
  7. Dell’Angelica EC. AP-3-dependent trafficking and disease: the first decade. Curr Opin Cell Biol. 2009;21(4):552–9.PubMedCrossRefGoogle Scholar
  8. Dell’Angelica EC, Klumperman J, Stoorvogel W, Bonifacino JS. Association of the AP-3 adaptor complex with clathrin. Science. 1998;280(5362):431–4.PubMedCrossRefGoogle Scholar
  9. Dell’Angelica EC, Shotelersuk V, Aguilar RC, Gahl WA, Bonifacino JS. Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell. 1999;3(1):11–21.PubMedCrossRefGoogle Scholar
  10. Di Pietro SM, Falcon-Perez JM, Tenza D, Setty SR, Marks MS, Raposo G, et al. BLOC-1 interacts with BLOC-2 and the AP-3 complex to facilitate protein trafficking on endosomes. Mol Biol Cell. 2006;17(9):4027–38.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Faundez VV, Kelly RB. The AP-3 complex required for endosomal synaptic vesicle biogenesis is associated with a casein kinase Ialpha-like isoform. Mol Biol Cell. 2000;11(8):2591–604.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Hirst J, Barlow LD, Francisco GC, Sahlender DA, Seaman MN, Dacks JB, et al. The fifth adaptor protein complex. PLoS Biol. 2011;9(10):e1001170.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Jackson LP, Kelly BT, McCoy AJ, Gaffry T, James LC, Collins BM, et al. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell. 2010;141(7):1220–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Janvier K, Kato Y, Boehm M, Rose JR, Martina JA, Kim BY, et al. Recognition of dileucine-based sorting signals from HIV-1 Nef and LIMP-II by the AP-1 gamma-sigma1 and AP-3 delta-sigma3 hemicomplexes. J Cell Biol. 2003;163(6):1281–90.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Lefrancois S, Janvier K, Boehm M, Ooi CE, Bonifacino JS. An ear-core interaction regulates the recruitment of the AP-3 complex to membranes. Dev Cell. 2004;7(4):619–25.PubMedCrossRefGoogle Scholar
  16. Nie Z, Boehm M, Boja ES, Vass WC, Bonifacino JS, Fales HM, et al. Specific regulation of the adaptor protein complex AP-3 by the Arf GAP AGAP1. Dev Cell. 2003;5(3):513–21.PubMedCrossRefGoogle Scholar
  17. Odorizzi G, Cowles CR, Emr SD. The AP-3 complex: a coat of many colours. Trends Cell Biol. 1998;8(7):282–8.PubMedCrossRefGoogle Scholar
  18. Ohno H, Aguilar RC, Yeh D, Taura D, Saito T, Bonifacino JS. The medium subunits of adaptor complexes recognize distinct but overlapping sets of tyrosine-based sorting signals. J Biol Chem. 1998;273(40):25915–21.PubMedCrossRefGoogle Scholar
  19. Raposo G, Marks MS. Melanosomes – dark organelles enlighten endosomal membrane transport. Nat Rev Mol Cell Biol. 2007;8(10):786–97.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Simpson F, Peden AA, Christopoulou L, Robinson MS. Characterization of the adaptor-related protein complex, AP-3. J Cell Biol. 1997;137(4):835–45.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK