Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Lynne M. ColuccioEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_530


Historical Background

In 1864, Kühne named a protein extracted from nematode muscle in high salt myosin and in 1939, Engelhardt and Ljubimowa determined that this protein possessed an ATPase activity. Later studies would determine that myosin is the major component of muscle thick filaments, and that its cyclic interactions with actin-containing thin filaments are the basis for muscle contraction. It would eventually be renamed myosin II to signify that the molecule is a dimer consisting of two polypeptide chains each with a globular head region and a long α-helical tail (Szent-Györgyi 2004). In 1969, a molecule resembling muscle myosin II was identified in slime mold, showing that myosin is a component of nonmuscle cells, too (Adelman and Taylor 1969). Subsequently, in 1973 a molecule with actin-activated ATPase activity resembling skeletal muscle myosin, although smaller in molecular weight and...

This is a preview of subscription content, log in to check access.


  1. Adelman MR, Taylor EW. Isolation of an actomyosin-like protein complex from slime mold plasmodium and the separation of the complex into actin- and myosin-like fractions. Biochemistry. 1969;8(12):4964–75.CrossRefPubMedGoogle Scholar
  2. Bähler M. Class IX myosins. Protein Cell Regul. 2008;7:391–401.CrossRefGoogle Scholar
  3. Bahloul A, Chevreux G, Wells AL, Martin D, Nolt J, Yang Z, et al. The unique insert in myosin VI is a structural calcium-calmodulin binding site. Proc Natl Acad Sci U S A. 2004;101(14):4787–92.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bement WM, Mooseker MS. TEDS rule: a molecular rationale for differential regulation of myosins by phosphorylation of the heavy chain head. Cell Motil Cytoskeleton. 1995;31(2):87–92.CrossRefPubMedGoogle Scholar
  5. Boger ET, Frolenkov GI, Friedman TB, Belyantseva IA. Myosin XVA. Protein Cell Regul. 2008;7:441–67.CrossRefGoogle Scholar
  6. Brzeska H, Korn ED. Regulation of class I and class II myosins by heavy chain phosphorylation. J Biol Chem. 1996;271(29):16983–6.CrossRefPubMedGoogle Scholar
  7. Buss F, Kendrick-Jones J. Myosin VI: a multifunctional motor protein. Protein Cell Regul. 2008;7:325–52.CrossRefGoogle Scholar
  8. Coluccio LM. Protein. Protein Cell Regul. 2008;7:95–124.CrossRefGoogle Scholar
  9. Coluccio LM, Geeves MA. Transient kinetic analysis of the 130-kDa myosin I (myr 1 gene product) from rat liver: a myosin I designed for maintenance of tension? J Biol Chem. 1999;274:21575–80.CrossRefPubMedGoogle Scholar
  10. Conti MA, Kawamoto S, Adelstein RS. Non-muscle myosin II. Protein Cell Regul. 2008;7:223–64.CrossRefGoogle Scholar
  11. Cremo CR, Hartshorne DJ. Smooth-muscle myosin II. Protein Cell Regul. 2008;7:171–222.CrossRefGoogle Scholar
  12. Cyr JL, Dumont RA, Gillespie PG. Myosin-1c interacts with hair-cell receptors through its calmodulin-binding IQ domains. J Neurosci. 2002;22(7):2487–95.CrossRefPubMedGoogle Scholar
  13. El-Amraoui A, Bahloul A, Petit C. Myosin VII. Protein Cell Regul. 2008;7:353–73.CrossRefGoogle Scholar
  14. El-Mezgueldi M, Bagshaw CR. The myosin family: biochemical and kientic properties. Protein. Cell Regul. 2008;7:55–93.Google Scholar
  15. Holmes KC. Myosin structure. In: Coluccio LM, editor. Myosins: a superfamily of molecular motors. Dordrecht: Springer; 2008. p. 35–54.Google Scholar
  16. Ito K, Ikebe M, Kashiyama T, Mogami T, Kon T, Yamamoto K. Kinetic mechanism of the fastest motor protein, Chara myosin. J Biol Chem. 2007;282(27):19534–45.CrossRefPubMedGoogle Scholar
  17. Kambara T, Komaba S, Ikebe M. Human myosin III is a motor having an extremely high affinity for actin. J Biol Chem. 2006;281(49):37291–301.CrossRefPubMedGoogle Scholar
  18. Knecht DA, Loomis WF. Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum. Science. 1987;236(4805):1081–6.CrossRefPubMedGoogle Scholar
  19. Laakso JM, Lewis JH, Shuman H, Ostap EM. Myosin I can act as a molecular force sensor. Science. 2008;321(5885):133–6.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Mooseker MS, Foth BJ. The structural and functional diversity of the myosin family. Protein Cell Regul. 2008;7:1–34. (Myosins: a superfamily of molecular motors [L.M. Coluccio, ed.]).Google Scholar
  21. Nambiar R, McConnell RE, Tyska MJ. Control of cell membrane tension by myosin-I. Proc Natl Acad Sci U S A. 2009;106(29):11972–7.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Odronitz F, Kollmar M. Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol. 2007;8(9):R196.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Phichith D, Travaglia M, Yang Z, Liu X, Zong AB, Safer D, et al. Cargo binding induces dimerization of myosin VI. Proc Natl Acad Sci U S A. 2009;106(41):17320–4.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Pollard TD, Korn ED. Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem. 1973;248(13):4682–90.PubMedGoogle Scholar
  25. Reggiani C, Bottinelli R. Myosin II: sarcomeric myosins, the motors of contraction in cardiac and skeletal muscles. Protein Cell Regul. 2008;7:125–70. (Myosins: a superfamily of molecular motors [L.M. Coluccio, ed.]).CrossRefGoogle Scholar
  26. Salles FT, Merritt JRC, Manor U, Dougherty GW, Sousa AD, Moore JE, et al. Myosin IIIa boosts elongation of stereocilia by transporting espin 1 to the plus ends of actin filaments. Nat Cell Biol. 2009;11:443–50.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Sellers JR, Weisman LS, Myosin V. Protein. Cell Regul. 2008;7:289–323.Google Scholar
  28. Sun Y, Schroeder III HW, Beausang JF, Homma K, Ikebe M, Goldman YE. Myosin VI walks “wiggly” on actin with large and variable tilting. Mol Cell. 2007;28(6):954–64.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Sweeney HL, Houdusse A. Structural and functional insights into the myosin motor mechanism. Annu Rev Biophys. 2010;39:539–57.CrossRefPubMedGoogle Scholar
  30. Szent-Györgyi AG. The early history of the biochemistry of muscle contraction. J Gen Physiol. 2004;123:631–41.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Tokuo H, Ikebe M. Myosin X transports Mena/VASP to the tip of filopodia. Biochem Biophys Res Commun. 2004;319(1):214–20.CrossRefPubMedGoogle Scholar
  32. Veigel C, Coluccio LM, Jontes JD, Sparrow JC, Milligan RA, Molloy JE. The motor protein myosin-I produces its working stroke in two steps [see comments]. Nature. 1999;398(6727):530–3.CrossRefPubMedGoogle Scholar
  33. Wang F, Thirumurugan K, Stafford WF, Hammer 3rd JA, Knight PJ, Sellers JR. Regulated conformation of myosin V. J Biol Chem 2004;279(4):2333–2336.PubMedCrossRefGoogle Scholar
  34. Yang Y, Baboolal TG, Siththanandan V, Chen M, Walker ML, Knight PJ, et al. A FERM domain autoregulates Drosophila myosin 7a activity. Proc Natl Acad Sci U S A. 2009;106(11):4189–41894.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Boston Biomedical Research InstituteWatertownUSA