Skip to main content

RGS Protein Family

  • Reference work entry
  • First Online:

Synonyms

Gα GAPs; Regulators of G-protein signaling; RGS proteins

Historical Background

Signal transduction by G protein–coupled receptors (GPCRs) was considered for many years (Gilman 1987) to be a three-component system: the cell-surface receptor to receive external input from hormones and neurotransmitters, the heterotrimeric G protein to transduce this input to the intracellular compartment by its structural changes upon the exchange of guanosine triphosphate (GTP) for guanosine diphosphate (GDP), and effector proteins (such as adenylyl cyclase, phospholipase C, and ion channels) to propagate the signal forward as changes in cell membrane potential and/or intracellular second messenger levels. However, for many physiological responses mediated by GPCRs, including the visual response controlled by the photoreceptor, rhodopsin (Arshavsky and Pugh 1998), intracellular signaling was known to be far shorter in duration than the time observed for the isolated components to revert to...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arshavsky VY, Pugh Jr EN. Lifetime regulation of G protein-effector complex: emerging importance of RGS proteins. Neuron. 1998;20(1):11–4.

    Article  PubMed  CAS  Google Scholar 

  • Berman DM, Wilkie TM, Gilman AG. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell. 1996a;86(3):445–52.

    Article  PubMed  CAS  Google Scholar 

  • Berman DM, Kozasa T, Gilman AG. The GTPase-activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis. J Biol Chem. 1996b;271(44):27209–12.

    Article  PubMed  CAS  Google Scholar 

  • Doupnik CA, Davidson N, Lester HA, Kofuji P. RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. Proc Natl Acad Sci U S A. 1997;94(19):10461–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Druey KM, Blumer KJ, Kang VH, Kehrl JH. Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature. 1996;379(6567):742–6.

    Article  PubMed  CAS  Google Scholar 

  • Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–49.

    Article  PubMed  CAS  Google Scholar 

  • Ingi T, Krumins AM, Chidiac P, Brothers GM, Chung S, Snow BE, et al. Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J Neurosci. 1998;18(18):7178–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimple RJ, Kimple ME, Betts L, Sondek J, Siderovski DP. Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits. Nature. 2002;416(6883):878–81.

    Article  PubMed  CAS  Google Scholar 

  • Kimple AJ, Soundararajan M, Hutsell SQ, Roos AK, Urban DJ, Setola V, et al. Structural determinants of G-protein alpha subunit selectivity by regulator of G-protein signaling 2 (RGS2). J Biol Chem. 2009;284(29):19402–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koelle MR, Horvitz HR. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell. 1996;84(1):115–25.

    Article  PubMed  CAS  Google Scholar 

  • Lambert NA, Johnston CA, Cappell SD, Kuravi S, Kimple AJ, Willard FS, et al. Regulators of G-protein signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity. Proc Natl Acad Sci U S A. 2010;107(15):7066–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Siderovski DP, Blum S, Forsdyke RE, Forsdyke DR. A set of human putative lymphocyte G0/G1 switch genes includes genes homologous to rodent cytokine and zinc finger protein-encoding genes. DNA Cell Biol. 1990;9(8):579–87.

    Article  PubMed  CAS  Google Scholar 

  • Siderovski DP, Heximer SP, Forsdyke DR. A human gene encoding a putative basic helix-loop-helix phosphoprotein whose mRNA increases rapidly in cycloheximide-treated blood mononuclear cells. DNA Cell Biol. 1994;13(2):125–47.

    Article  PubMed  CAS  Google Scholar 

  • Siderovski DP, Hessel A, Chung S, Mak TW, Tyers M. A new family of regulators of G-protein-coupled receptors? Curr Biol. 1996;6(2):211–2.

    Article  PubMed  CAS  Google Scholar 

  • Snow BE, Krumins AM, Brothers GM, Lee SF, Wall MA, Chung S, et al. A G protein gamma subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gbeta 5 subunits. Proc Natl Acad Sci U S A. 1998;95(22):13307–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soundararajan M, Willard FS, Kimple AJ, Turnbull AP, Ball LJ, Schoch GA, et al. Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits. Proc Natl Acad Sci U S A. 2008;105(17):6457–62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tesmer JJ, Berman DM, Gilman AG, Sprang SR. Structure of RGS4 bound to AlF4–activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Cell. 1997;89(2):251–61.

    Article  PubMed  CAS  Google Scholar 

  • Tu Y, Wilkie TM. Allosteric regulation of GAP activity by phospholipids in regulators of G-protein signaling. Methods Enzymol. 2004;389:89–105.

    Article  PubMed  CAS  Google Scholar 

  • Willard MD, Willard FS, Li X, Cappell SD, Snider WD, Siderovski DP. Selective role for RGS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation. EMBO J. 2007;26(8):2029–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willard MD, Willard FS, Siderovski DP. The superfamily of ‘regulator of G-protein signaling’ (RGS) proteins. In: Bradshaw R, Dennis E, editors. Handbook of cell signaling. 2nd ed. San Diego: Elsevier; 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Siderovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Siderovski, D.P., Kimple, A.J. (2018). RGS Protein Family. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_527

Download citation

Publish with us

Policies and ethics