Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

MOZ and MORF Lysine Acetyltransferases

  • Jiang-Ping Zhang
  • Xiaoyu Du
  • Kezhi Yan
  • Xiang-Jiao Yang
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_510

Synonyms

MORF (MOZ-related factor):  KAT6B;  Lysine (K) acetyltransferase 6B;  MYST4;  Querkopf

MOZ (monocytic leukemia zinc-finger protein):  KAT6A;  Lysine (K) acetyltransferase 6A;  MYST3

Historical Background

MOZ is a founding member of the MYST ( MOZ, YBF2, SAS2, and TIP60) family of lysine acetyltransferases (Borrow et al. 1996; Reifsnyder et al. 1996; reviewed in Yang and Ullah 2007). It was identified in 1996 through positional cloning of the reciprocal chromosomal t(8;16)(p11;p13) translocation with CREB-binding protein (CBP) associated with a subset of acute myeloid leukemia (AML) (Borrow et al. 1996). A few years later, the acetyltransferase activity was demonstrated and mapped to the MYST domain (Champagne et al. 2001; Kitabayashi et al. 2001a). Human MORF was identified in BLAST search against expressed sequence tag databases for additional MYST proteins (Champagne et al. 1999). Mouse Morf was also identified as Querkopf, a mutant allele causing craniofacial abnormalities...
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

This research was supported by operating grants from Canadian Institutes of Health Research (CIHR) and Canadian Cancer Society (to X. J. Y.).

References

  1. Aikawa Y, Katsumoto T, Zhang P, Shima H, Shino M, Terui K, Ito E, Ohno H, Stanley ER, Singh H, et al. PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell potential induced by MOZ-TIF2. Nat Med. 2010;16:580–5.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Blyth K, Terry A, Mackay N, Vaillant F, Bell M, Cameron ER, Neil JC, Stewart M. Runx2: a novel oncogenic effector revealed by in vivo complementation and retroviral tagging. Oncogene. 2001;20:295–302.CrossRefPubMedGoogle Scholar
  3. Borrow J, Stanton Jr VP, Andresen JM, Becher R, Behm FG, Chaganti RS, Civin CI, Disteche C, Dube I, Frischauf AM, et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet. 1996;14:33–41.CrossRefPubMedGoogle Scholar
  4. Camos M, Esteve J, Jares P, Colomer D, Rozman M, Villamor N, Costa D, Carrio A, Nomdedeu J, Montserrat E, et al. Gene expression profiling of acute myeloid leukemia with translocation t(8;16)(p11;p13) and MYST3-CREBBP rearrangement reveals a distinctive signature with a specific pattern of HOX gene expression. Cancer Res. 2006;66:6947–54.CrossRefPubMedGoogle Scholar
  5. Carapeti M, Aguiar RC, Goldman JM, Cross NC. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood. 1998;91:3127–33.PubMedGoogle Scholar
  6. Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pebusque MJ. MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosom Cancer. 2000;28:138–44.CrossRefPubMedGoogle Scholar
  7. Champagne N, Bertos NR, Pelletier N, Wang AH, Vezmar M, Yang Y, Heng HH, Yang XJ. Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Biol Chem. 1999;274:28528–36.CrossRefPubMedGoogle Scholar
  8. Champagne N, Pelletier N, Yang XJ. The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase. Oncogene. 2001;20:404–9.CrossRefPubMedGoogle Scholar
  9. Chan EM, Chan RJ, Comer EM, Goulet 3rd RJ, Crean CD, Brown ZD, Fruehwald AM, Yang Z, Boswell HS, Nakshatri H, et al. MOZ and MOZ-CBP cooperate with NF-kappaB to activate transcription from NF-kappaB-dependent promoters. Exp Hematol. 2007;35:1782–92.CrossRefPubMedGoogle Scholar
  10. Crump JG, Swartz ME, Eberhart JK, Kimmel CB. Moz-dependent Hox expression controls segment-specific fate maps of skeletal precursors in the face. Development. 2006;133:2661–9.CrossRefPubMedGoogle Scholar
  11. Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell. 2006;21:51–64.CrossRefPubMedGoogle Scholar
  12. Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science. 2000;289:1501–4.CrossRefPubMedGoogle Scholar
  13. Esteyries S, Perot C, Adelaide J, Imbert M, Lagarde A, Pautas C, Olschwang S, Birnbaum D, Chaffanet M, Mozziconacci MJ. NCOA3, a new fusion partner for MOZ/MYST3 in M5 acute myeloid leukemia. Leukemia. 2008;22:663–5.CrossRefPubMedGoogle Scholar
  14. Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, Rowan R, Curley DP, Kutok JL, Akashi K, Williams IR, et al. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood. 2005;106:494–504.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N, Rowan R, Amaral S, Curley D, Williams IR, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell. 2004;6:587–96.CrossRefPubMedGoogle Scholar
  16. Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T, Mitani K, Chiba S, Ogawa S, Kurokawa M, et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med. 2004;10:299–304.CrossRefPubMedGoogle Scholar
  17. Iwasaki H, Somoza C, Shigematsu H, Duprez EA, Iwasaki-Arai J, Mizuno S, Arinobu Y, Geary K, Zhang P, Dayaram T, et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood. 2005;106:1590–600.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Katsumoto T, Aikawa Y, Iwama A, Ueda S, Ichikawa H, Ochiya T, Kitabayashi I. MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev. 2006;20:1321–30.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Kim HG, de Guzman CG, Swindle CS, Cotta CV, Gartland L, Scott EW, Klug CA. The ETS family transcription factor PU.1 is necessary for the maintenance of fetal liver hematopoietic stem cells. Blood. 2004;104:3894–900.CrossRefPubMedGoogle Scholar
  20. Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M. Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein. EMBO J. 2001a;20:7184–96.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Kitabayashi I, Aikawa Y, Yokoyama A, Hosoda F, Nagai M, Kakazu N, Abe T, Ohki M. Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) chromosome translocation. Leukemia. 2001b;15:89–94.CrossRefPubMedGoogle Scholar
  22. Kojima K, Kaneda K, Yoshida C, Dansako H, Fujii N, Yano T, Shinagawa K, Yasukawa M, Fujita S, Tanimoto M. A novel fusion variant of the MORF and CBP genes detected in therapy-related myelodysplastic syndrome with t(10;16)(q22;p13). Br J Haematol. 2003;120:271–3.CrossRefPubMedGoogle Scholar
  23. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Laue K, Daujat S, Crump JG, Plaster N, Roehl HH, Kimmel CB, Schneider R, Hammerschmidt M. The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity. Development. 2008;135:1935–46.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Liang J, Prouty L, Williams BJ, Dayton MA, Blanchard KL. Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. Blood. 1998;92:2118–22.PubMedGoogle Scholar
  26. McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell. 1992;68:283–302.CrossRefPubMedGoogle Scholar
  27. McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, Klemsz M, Feeney AJ, Wu GE, Paige CJ, et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 1996;15:5647–58.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Merson TD, Dixon MP, Collin C, Rietze RL, Bartlett PF, Thomas T, Voss AK. The transcriptional coactivator Querkopf controls adult neurogenesis. J Neurosci. 2006;26:11359–70.CrossRefPubMedGoogle Scholar
  29. Miller CT, Maves L, Kimmel CB. Moz regulates Hox expression and pharyngeal segmental identity in zebrafish. Development. 2004;131:2443–61.CrossRefPubMedGoogle Scholar
  30. Moore SD, Herrick SR, Ince TA, Kleinman MS, Dal Cin P, Morton CC, Quade BJ. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res. 2004;64:5570–7.CrossRefPubMedGoogle Scholar
  31. Nabirochkina E, Simonova OB, Mertsalov IB, Kulikova DA, Ladigina NG, Korochkin LI, Buchman VL. Expression pattern of dd4, a sole member of the d4 family of transcription factors in Drosophila melanogaster. Mech Dev. 2002;114:119–23.CrossRefPubMedGoogle Scholar
  32. Ohta K, Ohigashi M, Naganawa A, Ikeda H, Sakai M, Nishikawa J, Imagawa M, Osada S, Nishihara T. Histone acetyltransferase MOZ acts as a co-activator of Nrf2-MafK and induces tumour marker gene expression during hepatocarcinogenesis. Biochem J. 2007;402:559–66.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84:321–30.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Paggetti J, Largeot A, Aucagne R, Jacquel A, Lagrange B, Yang XJ, Solary E, Bastie JN, Delva L. Crosstalk between leukemia-associated proteins MOZ and MLL regulates HOX gene expression in human cord blood CD34+ cells. Oncogene. 2010;29:5019–31.CrossRefPubMedGoogle Scholar
  35. Panagopoulos I, Fioretos T, Isaksson M, Samuelsson U, Billstrom R, Strombeck B, Mitelman F, Johansson B. Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet. 2001;10:395–404.CrossRefPubMedGoogle Scholar
  36. Pelletier N, Champagne N, Stifani S, Yang XJ. MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene. 2002;21:2729–40.CrossRefPubMedGoogle Scholar
  37. Perez-Campo FM, Borrow J, Kouskoff V, Lacaud G. The histone acetyl transferase activity of monocytic leukemia zinc finger is critical for the proliferation of hematopoietic precursors. Blood. 2009;113:4866–74.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Putnik J, Zhang CD, Archangelo LF, Tizazu B, Bartels S, Kickstein M, Greif PA, Bohlander SK. The interaction of ETV6 (TEL) and TIP60 requires a functional histone acetyltransferase domain in TIP60. Biochim Biophys Acta. 2007;1772:1211–24.CrossRefPubMedGoogle Scholar
  39. Reifsnyder C, Lowell J, Clarke A, Pillus L. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat Genet. 1996;14:42–9.CrossRefPubMedGoogle Scholar
  40. Rokudai S, Aikawa Y, Tagata Y, Tsuchida N, Taya Y, Kitabayashi I. Monocytic leukemia zinc finger (MOZ) interacts with p53 to induce p21 expression and cell-cycle arrest. J Biol Chem. 2009;284:237–44.CrossRefPubMedGoogle Scholar
  41. Rowley JD. The role of chromosome translocations in leukemogenesis. Semin Hematol. 1999;36:59–72.PubMedGoogle Scholar
  42. Sato Y, Bohlander SK, Kobayashi H, Reshmi S, Suto Y, Davis EM, Espinosa R, Hoopes R, Montgomery KT, Kucherlapati RS, et al. Heterogeneity in the breakpoints in balanced rearrangements involving band 12p13 in hematologic malignancies identified by fluorescence in situ hybridization: TEL (ETV6 ) is involved in only one half. Blood. 1997;90:4886–93.PubMedGoogle Scholar
  43. Scott EW, Simon MC, Anastasi J, Singh H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science. 1994;265:1573–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Scott EK, Lee T, Luo L. Enok encodes a Drosophila putative histone acetyltransferase required for mushroom body neuroblast proliferation. Curr Biol. 2001;11:99–104.CrossRefPubMedGoogle Scholar
  45. Soliman MA, Riabowol K. After a decade of study-ING, a PHD for a versatile family of proteins. Trends Biochem Sci. 2007;32:509–19.CrossRefPubMedGoogle Scholar
  46. Speck NA, Stacy T, Wang Q, North T, Gu TL, Miller J, Binder M, Marin-Padilla M. Core-binding factor: a central player in hematopoiesis and leukemia. Cancer Res. 1999;59:1789s–93s.PubMedGoogle Scholar
  47. Surapureddi S, Yu S, Bu H, Hashimoto T, Yeldandi AV, Kashireddy P, Cherkaoui-Malki M, Qi C, Zhu YJ, Rao MS, et al. Identification of a transcriptionally active peroxisome proliferator-activated receptor alpha -interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator. Proc Natl Acad Sci U S A. 2002;99:11836–41.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Thomas T, Voss AK, Chowdhury K, Gruss P. Querkopf, a MYST family histone acetyltransferase, is required for normal cerebral cortex development. Development. 2000;127:2537–48.PubMedGoogle Scholar
  49. Thomas T, Corcoran LM, Gugasyan R, Dixon MP, Brodnicki T, Nutt SL, Metcalf D, Voss AK. Monocytic leukemia zinc finger protein is essential for the development of long-term reconstituting hematopoietic stem cells. Genes Dev. 2006;20:1175–86.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ullah M, Pelletier N, Xiao L, Zhao SP, Wang K, Degerny C, Tahmasebi S, Cayrou C, Doyon Y, Goh SL, et al. Molecular architecture of quartet MOZ/MORF histone acetyltransferase complexes. Mol Cell Biol. 2008;28:6828–43.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Vaillant F, Blyth K, Terry A, Bell M, Cameron ER, Neil J, Stewart M. A full-length Cbfa1 gene product perturbs T-cell development and promotes lymphomagenesis in synergy with myc. Oncogene. 1999;18:7124–34.CrossRefPubMedGoogle Scholar
  52. van Oostveen J, Bijl J, Raaphorst F, Walboomers J, Meijer C. The role of homeobox genes in normal hematopoiesis and hematological malignancies. Leukemia. 1999;13:1675–90.CrossRefPubMedGoogle Scholar
  53. Voss AK, Collin C, Dixon MP, Thomas T. Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity. Dev Cell. 2009;17:674–86.CrossRefPubMedGoogle Scholar
  54. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A. 1996;93:3444–9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Wang LC, Swat W, Fujiwara Y, Davidson L, Visvader J, Kuo F, Alt FW, Gilliland DG, Golub TR, Orkin SH. The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes Dev. 1998;12:2392–402.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Westendorf JJ, Hiebert SW. Mammalian runt-domain proteins and their roles in hematopoiesis, osteogenesis, and leukemia. J Cell Biochem. 1999;Suppl 32–33:51–8.CrossRefPubMedGoogle Scholar
  57. Wheeler JC, Shigesada K, Gergen JP, Ito Y. Mechanisms of transcriptional regulation by Runt domain proteins. Semin Cell Dev Biol. 2000;11:369–75.CrossRefPubMedGoogle Scholar
  58. Yang XJ, Ullah M. MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells. Oncogene. 2007;26:5408–19.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jiang-Ping Zhang
    • 1
    • 2
  • Xiaoyu Du
    • 1
    • 2
  • Kezhi Yan
    • 1
    • 2
  • Xiang-Jiao Yang
    • 1
    • 2
  1. 1.The Rosalind and Morris Goodman Cancer Research Center and Department of BiochemistryMcGill UniversityMontréalCanada
  2. 2.Department of MedicineMcGill University Health CenterMontréalCanada