Skip to main content

SWI/SNF Chromatin Remodeling Complex

  • Reference work entry
  • First Online:
  • 553 Accesses

Synonyms

BAF; BRG1; BRM; hBRM; PBAF RSC; SMARCA; SWI/SNF

Historical Background

There are several large multi-subunit complexes that couple ATP hydrolysis with regulation of the chromatin landscape and are referred to as ATP-dependent chromatin remodelers. These complexes are primarily divided into four major classes based on the domain organization of their catalytic subunit. In this entry we focus on one of those major classes called the SWI/SNF subfamily. The SWI/SNF subfamily of chromatin remodelers are well conserved throughout all eukaryotes and typically the catalytic subunit has at least four signature motifs that are the ATPase, bromo, AT-hook, and HSA domains. The ATPase domain has sequence homology with the two lobes of such ATP-dependent DNA translocases like RecA and Rad54. The DNA translocation activity of SWI/SNF is essential for these complexes to move nucleosomes along DNA. The bromo domain binds to acetylated lysines in histone tails which may modulate the activity of...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agalioti T, Chen G, Thanos D. Deciphering the transcriptional histone acetylation code for a human gene. Cell. 2002;111(3):381–92.

    Article  PubMed  CAS  Google Scholar 

  • Angus-Hill ML, et al. A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell cycle control. Mol Cell. 2001;7(4):741–51.

    Article  PubMed  CAS  Google Scholar 

  • Baetz KK, et al. The ctf13-30/CTF13 genomic haploinsufficiency modifier screen identifies the yeast chromatin remodeling complex RSC, which is required for the establishment of sister chromatid cohesion. Mol Cell Biol. 2004;24(3):1232–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barbaric S, Reinke H, Horz W. Multiple mechanistically distinct functions of SAGA at the PHO5 promoter. Mol Cell Biol. 2003;23(10):3468–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Batsche E, Yaniv M, Muchardt C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol. 2006;13(1):22–9.

    Article  PubMed  CAS  Google Scholar 

  • Battaglioli E, et al. REST repression of neuronal genes requires components of the hSWI.SNF complex. J Biol Chem. 2002;277(43):41038–45.

    Article  PubMed  CAS  Google Scholar 

  • Bennett CB, et al. Genes required for ionizing radiation resistance in yeast. Nat Genet. 2001;29(4):426–34.

    Article  PubMed  CAS  Google Scholar 

  • Cairns BR, et al. Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol Cell. 1999;4(5):715–23.

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, et al. Sfh1p, a component of a novel chromatin-remodeling complex, is required for cell cycle progression. Mol Cell Biol. 1997;17(6):3323–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carey M, Li B, Workman JL. RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol Cell. 2006;24(3):481–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chai B, et al. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 2005;19(14):1656–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corey LL, et al. Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev. 2003;17(11):1392–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cosma MP, Tanaka T, Nasmyth K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell. 1999;97(3):299–311.

    Article  PubMed  CAS  Google Scholar 

  • de la Serna IL, Carlson KA, Imbalzano AN, Mammalian SWI. SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet. 2001;27(2):187–90.

    Article  PubMed  CAS  Google Scholar 

  • Dey A, et al. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci U S A. 2003;100(15):8758–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhalluin C, et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999;399(6735):491–6.

    Article  PubMed  CAS  Google Scholar 

  • Dilworth FJ, et al. ATP-driven chromatin remodeling activity and histone acetyltransferases act sequentially during transactivation by RAR/RXR In vitro. Mol Cell. 2000;6(5):1049–58.

    Article  PubMed  CAS  Google Scholar 

  • Du J, et al. Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins. Genetics. 1998;150(3):987–1005.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dunaief JL, et al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell. 1994;79(1):119–30.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira H, Flaus A, Owen-Hughes T. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J Mol Biol. 2007;374(3):563–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ford J, et al. A SWI/SNF- and INO80-dependent nucleosome movement at the INO1 promoter. Biochem Biophys Res Commun. 2007;361(4):974–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Francis NJ, Kingston RE, Woodcock CL. Chromatin compaction by a polycomb group protein complex. Science. 2004;306(5701):1574–7.

    Article  PubMed  CAS  Google Scholar 

  • Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25(38):5220–7.

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena RW, et al. SWI/SNF activity is required for the repression of deoxyribonucleotide triphosphate metabolic enzymes via the recruitment of mSin3B. J Biol Chem. 2007;282(28):20116–23.

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, et al. Genetic control of the cell division cycle in yeast. Science. 1974;183(120):46–51.

    Article  PubMed  CAS  Google Scholar 

  • Hassan AH, Neely KE, Workman JL. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell. 2001;104(6):817–27.

    Article  PubMed  CAS  Google Scholar 

  • Hassan AH, et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell. 2002;111(3):369–79.

    Article  PubMed  CAS  Google Scholar 

  • Hassan AH, Awad S, Prochasson P. The Swi2/Snf2 bromodomain is required for the displacement of SAGA and the octamer transfer of SAGA-acetylated nucleosomes. J Biol Chem. 2006;281(26):18126–34.

    Article  PubMed  CAS  Google Scholar 

  • Ho L, et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci U S A. 2009;106(13):5181–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsiao PW, et al. BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation. Mol Cell Biol. 2003;23(17):6210–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang J, Laurent BC. A Role for the RSC chromatin remodeler in regulating cohesion of sister chromatid arms. Cell Cycle. 2004;3(8):973–5.

    PubMed  CAS  Google Scholar 

  • Huang J, Hsu JM, Laurent BC. The RSC nucleosome-remodeling complex is required for Cohesin’s association with chromosome arms. Mol Cell. 2004;13(5):739–50.

    Article  PubMed  CAS  Google Scholar 

  • Huang X, et al. Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180. Dev Biol. 2008;319(2):258–66.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson RH, et al. Structure and function of a human TAFII250 double bromodomain module. Science. 2000;288(5470):1422–5.

    Article  PubMed  CAS  Google Scholar 

  • Kasten M, et al. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J. 2004;23(6):1348–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SJ, et al. Activator Gcn4p and Cyc8p/Tup1p are interdependent for promoter occupancy at ARG1 in vivo. Mol Cell Biol. 2005;25(24):11171–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koyama H, et al. Abundance of the RSC nucleosome-remodeling complex is important for the cells to tolerate DNA damage in Saccharomyces cerevisiae. FEBS Lett. 2002;531(2):215–21.

    Article  PubMed  CAS  Google Scholar 

  • Krebs JE, et al. Global role for chromatin remodeling enzymes in mitotic gene expression. Cell. 2000;102(5):587–98.

    Article  PubMed  CAS  Google Scholar 

  • Kundu S, Horn PJ, Peterson CL. SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev. 2007;21(8):997–1004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lavigne M, et al. Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression. PLoS Genet. 2009;5(12):e1000769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lessard J, et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron. 2007;55(2):201–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lickert H, et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature. 2004;432(7013):107–12.

    Article  PubMed  CAS  Google Scholar 

  • Lorch Y, Zhang M, Kornberg RD. RSC unravels the nucleosome. Mol Cell. 2001;7(1):89–95.

    Article  PubMed  CAS  Google Scholar 

  • Malone EA, et al. Mutations in SPT16/CDC68 suppress cis- and trans-acting mutations that affect promoter function in Saccharomyces cerevisiae. Mol Cell Biol. 1991;11(11):5710–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martens JA, Winston F. Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev. 2003;13(2):136–42.

    Article  PubMed  CAS  Google Scholar 

  • Medina PP, Sanchez-Cespedes M. Involvement of the chromatin-remodeling factor BRG1/SMARCA4 in human cancer. Epigenetics. 2008;3(2):64–8.

    Article  PubMed  Google Scholar 

  • Monahan BJ, et al. Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast. Nat Struct Mol Biol. 2008;15(8):873–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreira JM, Holmberg S. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC. EMBO J. 1999;18(10):2836–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moshkin YM, et al. Histone chaperone ASF1 cooperates with the Brahma chromatin-remodelling machinery. Genes Dev. 2002;16(20):2621–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moshkin YM, et al. Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control. Mol Cell Biol. 2007;27(2):651–61.

    Article  PubMed  CAS  Google Scholar 

  • Neely KE, et al. Transcription activator interactions with multiple SWI/SNF subunits. Mol Cell Biol. 2002;22(6):1615–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ng HH, et al. Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes Dev. 2002;16(7):806–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen AL, et al. Selective interaction between the chromatin-remodeling factor BRG1 and the heterochromatin-associated protein HP1alpha. EMBO J. 2002;21(21):5797–806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999;63(2):349–404.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Park YJ, Luger K. Histone chaperones in nucleosome eviction and histone exchange. Curr Opin Struct Biol. 2008;18(3):282–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parnell TJ, Huff JT, Cairns BR. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 2008;27(1):100–10.

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL, Cote J. Cellular machineries for chromosomal DNA repair. Genes Dev. 2004;18(6):602–16.

    Article  PubMed  CAS  Google Scholar 

  • Peterson S, et al. NAP1 catalyzes the formation of either positive or negative supercoils on DNA on basis of the dimer-tetramer equilibrium of histones H3/H4. Biochemistry. 2007;46(29):8634–46.

    Article  PubMed  CAS  Google Scholar 

  • Prochasson P, et al. The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF. Genes Dev. 2005;19(21):2534–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ransom M, et al. FACT and the proteasome promote promoter chromatin disassembly and transcriptional initiation. J Biol Chem. 2009;284(35):23461–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reinke H, Horz W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol Cell. 2003;11(6):1599–607.

    Article  PubMed  CAS  Google Scholar 

  • Reinke H, Gregory PD, Horz W. A transient histone hyperacetylation signal marks nucleosomes for remodeling at the PHO8 promoter in vivo. Mol Cell. 2001;7(3):529–38.

    Article  PubMed  CAS  Google Scholar 

  • Sawada S, et al. A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell. 1994;77(6):917–29.

    Article  PubMed  CAS  Google Scholar 

  • Schwabish MA, Struhl K. The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol Cell Biol. 2007;27(20):6987–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shim EY, et al. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol Cell Biol. 2005;25(10):3934–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shivaswamy S, Iyer VR. Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Mol Cell Biol. 2008;28(7):2221–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shogren-Knaak M, et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 2006;311(5762):844–7.

    Article  PubMed  CAS  Google Scholar 

  • Simpson RT, et al. Nucleosome positioning and transcription. Cold Spring Harb Symp Quant Biol. 1993;58:237–45.

    Article  PubMed  CAS  Google Scholar 

  • Soutoglou E, Talianidis I. Coordination of PIC assembly and chromatin remodeling during differentiation-induced gene activation. Science. 2002;295(5561):1901–4.

    Article  PubMed  CAS  Google Scholar 

  • Soutourina J, et al. Rsc4 connects the chromatin remodeler RSC to RNA polymerases. Mol Cell Biol. 2006;26(13):4920–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.

    Article  PubMed  CAS  Google Scholar 

  • Sudarsanam P, et al. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2000;97(7):3364–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Syntichaki P, Topalidou I, Thireos G. The Gcn5 bromodomain co-ordinates nucleosome remodelling. Nature. 2000;404(6776):414–7.

    Article  PubMed  CAS  Google Scholar 

  • Tomar RS, et al. A novel mechanism of antagonism between ATP-dependent chromatin remodeling complexes regulates RNR3 expression. Mol Cell Biol. 2009;29(12):3255–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuchiya E, et al. The Saccharomyces cerevisiae NPS1 gene, a novel CDC gene which encodes a 160 kDa nuclear protein involved in G2 phase control. EMBO J. 1992;11(11):4017–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuchiya E, Hosotani T, Miyakawa T. A mutation in NPS1/STH1, an essential gene encoding a component of a novel chromatin-remodeling complex RSC, alters the chromatin structure of saccharomyces cerevisiae centromeres. Nucleic Acids Res. 1998;26(13):3286–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Underhill C, et al. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem. 2000;275(51):40463–70.

    Article  PubMed  CAS  Google Scholar 

  • van Attikum H, Fritsch O, Gasser SM. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J. 2007;26(18):4113–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • VanDemark AP, et al. Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation. Mol Cell. 2007;27(5):817–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan M, et al. Molecular basis of CD4 repression by the Swi/Snf-like BAF chromatin remodeling complex. Eur J Immunol. 2009;39(2):580–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, et al. Beyond the double helix: writing and reading the histone code. Novartis Found Symp. 2004;259:3–17. discussion 17–21, 163–9.

    PubMed  CAS  Google Scholar 

  • Xu F, Zhang K, Grunstein M. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell. 2005;121(3):375–85.

    Article  PubMed  CAS  Google Scholar 

  • Yoo AS, et al. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature. 2009;460(7255):642–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yukawa M, et al. Nps1/Sth1p, a component of an essential chromatin-remodeling complex of Saccharomyces cerevisiae, is required for the maximal expression of early meiotic genes. Genes Cells. 1999;4(2):99–110.

    Article  PubMed  CAS  Google Scholar 

  • Zhang HS, et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell. 2000;101(1):79–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payel Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sen, P., Chatterjee, N., Bartholomew, B. (2018). SWI/SNF Chromatin Remodeling Complex. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_46

Download citation

Publish with us

Policies and ethics