Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Guanylyl Cyclase Receptors

  • Sandhya S. VisweswariahEmail author
  • Natasha Jaiswal
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_434


 GC-A;  GC-B;  GC-C;  GC-D;  GC-G;  ret-GC;  sGC

Historical Background

In 1971 when Sutherland received the Nobel Prize for the discovery of the second messenger cAMP, the functions of cGMP were still a mystery, even though cGMP had been isolated from rat urine in 1963, and an enzyme that cleaved the phosphodiester bond was discovered the following year. The levels of cGMP are regulated by synthesis by guanylyl cyclases (GCs), extrusion from the cell, and/or degradation by phosphodiesterases (Kots et al. 2009).

GCs were discovered, 6 years after the cGMP was identified, by three separate groups (Hardman and Sutherland 1969; Schultz et al. 1969; White and Aurbach 1969). Two classes of GCs, one that is cytosolic (soluble) and the other that is found associated with the particulate or membrane fraction of cells could be identified. The two forms of guanylyl cyclases are composed of polypeptides of different sizes, with different biochemical properties (Kimura and Murad 1974)...
This is a preview of subscription content, log in to check access.


  1. Allerston CK, von Delft F, Gileadi O. Crystal structures of the catalytic domain of human soluble guanylate cyclase. PLoS One. 2013;8:e57644.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anand-Srivastava MB. Natriuretic peptide receptor-C signaling and regulation. Peptides. 2005;26:1044–59.PubMedCrossRefGoogle Scholar
  3. Arshad N, Ballal S, Visweswariah SS. Site-specific N-linked glycosylation of receptor guanylyl cyclase C regulates ligand binding, ligand-mediated activation and interaction with vesicular integral membrane protein 36, VIP36. J Biol Chem. 2013;288:3907.PubMedCrossRefGoogle Scholar
  4. Bartels CF, Bukulmez H, Padayatti P, Rhee DK, van Ravenswaaij-Arts C, Pauli RM, Mundlos S, Chitayat D, Shih LY, Al-Gazali LI, Kant S, Cole T, Morton J, Cormier-Daire V, Faivre L, Lees M, Kirk J, Mortier GR, Leroy J, Zabel B, Kim CA, Crow Y, Braverman NE, van den Akker F, Warman MLA. Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet. 2004;75(1):27–34.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Basu N, Bhandari R, Natarajan VT, Visweswariah SS. Cross talk between receptor guanylyl cyclase C and c-src tyrosine kinase regulates colon cancer cell cytostasis. Mol Cell Biol. 2009;29:5277–89.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Basu N, Arshad N, Visweswariah SS. Receptor guanylyl cyclase C (GC-C): regulation and signal transduction. Mol Cell Biochem. 2010;334:67–80.PubMedCrossRefGoogle Scholar
  7. Basu N, Saha S, Khan I, Ramachandra SG, Visweswariah SS. Intestinal cell proliferation and senescence are regulated by receptor Guanylyl Cyclase C and p21. J Biol Chem. 2014;89:581–93.CrossRefGoogle Scholar
  8. Begg DP, Steinbrecher KA, Mul JD, Chambers AP, Kohli R, Haller A, Cohen MB, Woods SC, Seeley RJ. Effect of guanylate cyclase-c activity on energy and glucose homeostasis. Diabetes. 2014;63(11):3798–804.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Beuve A, Wu C, Cui C, Liu T, Jain MR, Huang C, Yan L, Kholodovych V, Li H. Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor. J Proteome. 2016;s138:40–7.CrossRefGoogle Scholar
  10. Blomain ES, Lin JE, Kraft CL, Trela UT, Rock JM, Aing AS, Snook AE, Waldman SA. Translating colorectal cancer prevention through the guanylyl cyclase C signaling axis. Expert Rev Clin Pharmacol. 2013;6:557–64.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Derbyshire ER, Fernhoff NB, Deng S, et al. Nucleotide regulation of soluble guanylate cyclase substrate specificity. Biochemistry. 2009;48:7519–24.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dickey DM, Barbieri KA, McGuirk CM, Potter LR. Mol Pharmacol. 2010;78:431–5.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Fiskerstrand T, Arshad N, Haukanes BI, Tronstad RR, Pham KD, Johansson S, Havik B, Tonder SL, Levy SE, Brackman D, Boman H, Biswas KH, Apold J, Hovdenak N, Visweswariah SS, Knappskog PM. Familial diarrhea syndrome caused by an activating GUCY2C mutation. N Engl J Med. 2012;366:1586–95.PubMedCrossRefGoogle Scholar
  14. Gong R, Ding C, Hu J, Lu Y, Liu F, Mann E, Xu F, Cohen MB, Luo M. Role for the membrane receptor guanylyl cyclase-C in attention deficiency and hyperactive behavior. Science. 2011;333:1642–6.PubMedCrossRefGoogle Scholar
  15. Hachiya R, Ohashi Y, Kamei Y, et al. Intact kinase homology domain of natriuretic peptide receptor-B is essential for skeletal development. J Clin Endocrinol Metab. 2007;92:4009–14.PubMedCrossRefGoogle Scholar
  16. Hardman JG, Sutherland EW. Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3′,5′-monophosphate from guanosine trihosphate. J Biol Chem. 1969;244:6363–70.PubMedGoogle Scholar
  17. Hasegawa M, Hidaka Y, Wada A, Hirayama T, Shimonishi Y. The relevance of N-linked glycosylation to the binding of a ligand to guanylate cyclase C. Eur J Biochem. 1999;263:338–46.PubMedCrossRefGoogle Scholar
  18. Hunt DM, Buch P, Michaelides M. Guanylate cyclases and associated activator proteins in retinal disease. Mol Cell Biochem. 2010;334:157–68.PubMedCrossRefGoogle Scholar
  19. Huo X, Abe T, Misono KS. Ligand binding-dependent limited proteolysis of the atrial natriuretic peptide receptor: juxtamembrane hinge structure essential for transmembrane signal transduction. Biochemistry. 1999;38:16941–51.PubMedCrossRefGoogle Scholar
  20. Kimura H, Murad F. Evidence for two different forms of guanylate cyclase in rat heart. J Biol Chem. 1974;249:6910–6.PubMedGoogle Scholar
  21. Koller KJ, Lipari MT, Goeddel DV. Proper glycosylation and phosphorylation of the type A natriuretic peptide receptor are required for hormone-stimulated guanylyl cyclase activity. J Biol Chem. 1993;268:5997–6003.PubMedGoogle Scholar
  22. Kots AY, Martin E, Sharina IG, et al. A short history of cGMP, guanylyl cyclases, and cGMP-dependent protein kinases. Handb Exp Pharmacol. 2009;19:1–14.Google Scholar
  23. Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C. The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS One. 2007;2:e449.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kwezi LI, Ruzvidzo O, Wheeler JI, Govender K, Iacuone S, Thompson PE, Gehring C, Irving HR. The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP dependant signaling in plants. J Biol Chem. 2011;286:22580–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Lin H, Cheng CF, Hou HH, et al. Disruption of guanylyl cyclase-G protects against acute renal injury. J Am Soc Nephrol. 2008;19:339–48.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Lin JE, Li P, Snook AE, Schulz S, Dasgupta A, Hyslop TM, Gibbons AV, Marszlowicz G, Pitari GM, Waldman SA. The hormone receptor GUCY2C suppresses intestinal tumor formation by inhibiting AKT signaling. Gastroenterology. 2010;138:241–54.PubMedCrossRefGoogle Scholar
  27. Li P, Schulz S, Bombonati A, Palazzo JP, Hyslop TM, Xu Y, Baran AA, Siracusa LD, Pitari GM, Waldman SA. Guanylyl cyclase C suppresses intestinal tumorigenesis by restricting proliferation and maintaining genomic integrity. Gastroenterology. 2007;133:599–607.PubMedCrossRefGoogle Scholar
  28. Lucas KA, Pitari GM, Kazerounian S, et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev. 2000;52:375–414.PubMedGoogle Scholar
  29. Martel G, Hamet P, Tremblay J. Central role of guanylyl cyclase in natriuretic peptide signaling in hypertension and metabolic syndrome. Mol Cell Biochem. 2010;334:53–65.PubMedCrossRefGoogle Scholar
  30. Meier S, Ruzvidzo O, Morse M, Donaldson L, Kwezi L, Gehring C. The Arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes. PLoS One. 2010;5:e8904.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Mergia E, Koesling D, Friebe A. Genetic mouse models of the NO receptor ‘soluble’ guanylyl cyclases. Handb Exp Pharmacol. 2009;191:33–46.CrossRefGoogle Scholar
  32. Morton DB, Langlais KK, Stewart JA, Vermehren A. Comparison of the properties of the five soluble guanylyl cyclase subunits in Drosophila melanogaster. J Insect Sci. 2005;5:12.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Muller T, Rasool I, Heinz-Erian P, Mildenberger E, Hulstrunk C, Muller A, Michaud L, Koot BG, Ballauff A, Vodopiutz J, Rosipal S, Petersen BS, Franke A, Fuchs I, Witt H, Zoller H, Janecke AR, Visweswariah SS. Congenital secretory diarrhoea caused by activating germline mutations in GUCY2C. Gut. 2015;65:1306–13.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Perkins WJ. Regulation of soluble guanylyl cyclase: looking beyond NO. Am J Physiol Lung Cell Mol Physiol. 2006;291:L334–6.PubMedCrossRefGoogle Scholar
  35. Potter LR. Domain analysis of human transmembrane guanylyl cyclase receptors: implications for regulation. Front Biosci. 2005;10:1205–20.PubMedCrossRefGoogle Scholar
  36. Potter LR. Guanylyl cyclase structure, function and regulation. Cell Signal. 2011a;23:1921–6.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Potter LR. Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. Pharmacol Ther. 2011b;130:71–82.PubMedCrossRefGoogle Scholar
  38. Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, Berkowitz GA. Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci USA. 2010;107:21193–8.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Rauch A, Leipelt M, Russwurm M, et al. Crystal structure of the guanylyl cyclase Cya2. Proc Natl Acad Sci USA. 2008;105:15720–5.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Romi H, Cohen I, Landau D, Alkrinawi S, Yerushalmi B, Hershkovitz R, NewmanHeiman N, Cutting GR, Ofir R, Sivan S, Birk OS. Meconium ileus caused by mutations in GUCY2C, encoding the CFTR-activating guanylate cyclase 2C. Am J Hum Genet. 2012;90:893–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Russwurm M, Koesling D. Isoforms of NO-sensitive guanylyl cyclase. Mol Cell Biochem. 2002;230:159–64.PubMedCrossRefGoogle Scholar
  42. Schrammel A, Behrends S, Schmidt K, Koesling D, Mayer B. Characterization of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol Pharmacol. 1996;50:1–5.PubMedGoogle Scholar
  43. Schultz G, Böhme E, Munske K. Guanyl cyclase: determination of enzyme activity. Life Sci. 1969;8:1323–32.PubMedCrossRefGoogle Scholar
  44. Schulz S, Green CK, Yuen PS, et al. Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell. 1990;63:941–8.PubMedCrossRefGoogle Scholar
  45. Schulz S. C-type natriuretic peptide and guanylyl cyclase B receptor. Peptides. 2005;26:1024–34.PubMedCrossRefGoogle Scholar
  46. Shyjan AW, de Sauvage FJ, Gillett NA, et al. Molecular cloning of a retina-specific membrane guanylyl cyclase. Neuron. 1992;9:727–37.PubMedCrossRefGoogle Scholar
  47. Stone JR, Marletta MA. Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry. 1996;35:1093–9.PubMedCrossRefGoogle Scholar
  48. Valentino MA, Lin JE, Snook AE, Li P, Kim GW, Marszalowicz G, Magee MS, Hyslop T, Schulz S, Waldman SA. A uroguanylin-GUCY2C endocrine axis regulates feeding in mice. J Clin Invest. 2011;121(9):3578–88.PubMedPubMedCentralCrossRefGoogle Scholar
  49. White AA, Aurbach GD. Detection of guanyl cyclase in mammalian tissues. Biochim Biophys Acta. 1969;191:686–97.PubMedCrossRefGoogle Scholar
  50. Winger JA, Derbyshire ER, Lamers MH, et al. The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase. BMC Struct Biol. 2008;8:42.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Wilson C, Lin JE, Li P, Snook AE, Gong J, Sato T, Liu C, Girondo MA, Rui H, Hyslop T, Waldman SA. The paracrine hormone for the GUCY2C tumor suppressor, guanylin, is universally lost in colorectal cancer. Cancer Epidemiol Biomark Prev. 2014;23(11):2328–37.CrossRefGoogle Scholar
  52. Young JM, Waters H, Dong C, et al. Degeneration of the olfactory guanylyl cyclase D gene during primate evolution. PLoS One. 2007;2:e884.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Zhao Y, Brandish PE, Ballou DP, Marletta MA. A molecular basis for nitric oxide sensing by soluble guanylate cyclase. Proc Natl Acad Sci USA. 1999;96(26):14753–8.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Zhao Y, Brandish PE, DiValentin M, Schelvis JP, Babcock GT, Marletta MA. Inhibition of soluble guanylate cyclase by ODQ. Biochemistry. 2000;39(35):10848–54.PubMedCrossRefGoogle Scholar
  55. Zufall F, Munger SD. Receptor guanylyl cyclases in mammalian olfactory function. Mol Cell Biochem. 2010;334(1–2):191–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia