Skip to main content

Eph Receptor

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 50 Accesses

Historical Background

The first Eph receptor, which was found to be overexpressed in erythropoietin-producing hepatocellular carcinoma cell line (hence, the name Eph), was identified by homology cloning using the kinase domain of the viral oncogene v-fps as a probe for low-stringency hybridization (Hirai et al. 1987). Since then, other homologous members were cloned by low-stringency cross-hybridization or PCR with primers based on conserved sequences in the kinase domain. There are a total of fourteen homologous Eph receptors identified in mammals to date, comprising the largest family of RTK. They are generally categorized as either EphA or EphB receptor based on ligand specificity (see below).

During the early days when their ligands had not yet been identified, Eph receptors were often described as “orphan receptors” with unknown function. The first Eph receptor ligand, named at that time B61, was cloned as a cytokine-inducible gene (Holzman et al. 1990), although it was not...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arvanitis D, Davy A. Eph/ephrin signaling: networks. Genes Dev. 2008;22:416–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bartley TD, Hunt RW, Welcher AA, Boyle WJ, Parker VP, Lindberg RA, HS L, Colombero AM, Elliott RL, Guthrie BA, et al. B61 is a ligand for the ECK receptor protein-tyrosine kinase. Nature. 1994;368:558–60.

    Article  CAS  PubMed  Google Scholar 

  • Cisse M, Halabisky B, Harris J, Devidze N, Dubal DB, Sun B, Orr A, Lotz G, Kim DH, Hamto P, et al. Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature. 2011;469:47–52.

    Article  CAS  PubMed  Google Scholar 

  • Cowan CA, Henkemeyer M. Ephrins in reverse, park and drive. Trends Cell Biol. 2002;12:339–46.

    Article  CAS  PubMed  Google Scholar 

  • Drescher U. Eph family functions from an evolutionary perspective. Curr Opin Genet Dev. 2002;12:397–402.

    Article  CAS  PubMed  Google Scholar 

  • Eph Nomenclature Committee. Unified nomenclature for Eph family receptors and their ligands, the ephrins. Cell. 1997;90:403–4.

    Article  Google Scholar 

  • Filosa A, Paixao S, Honsek SD, Carmona MA, Becker L, Feddersen B, Gaitanos L, Rudhard Y, Schoepfer R, Klopstock T, et al. Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci. 2009;12:1285–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu AK, Hung KW, Fu WY, Shen C, Chen Y, Xia J, Lai KO. IpNY.APC(Cdh1) mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity. Nat Neurosci. 2011;14:181–9.

    Article  CAS  PubMed  Google Scholar 

  • Fu WY, Chen Y, Sahin M, Zhao XS, Shi L, Bikoff JB, Lai KO, Yung WH, Fu AK, Greenberg ME, Ip NY. Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci. 2007;10:67–76.

    Article  CAS  PubMed  Google Scholar 

  • Grunwald IC, Korte M, Adelmann G, Plueck A, Kullander K, Adams RH, Frotscher M, Bonhoeffer T, Klein R. Hippocampal plasticity requires postsynaptic ephrinBs. Nat Neurosci. 2004;7:33–40.

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F. A novel putative tyrosine kinase receptor encoded by the eph gene. Science. 1987;238:1717–20.

    Article  CAS  PubMed  Google Scholar 

  • Holzman LB, Marks RM, Dixit VM. A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein. Mol Cell Biol. 1990;10:5830–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klein R. Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci. 2009;12:15–20.

    Article  CAS  PubMed  Google Scholar 

  • Lackmann M, Boyd AW. Eph, a protein family coming of age: more confusion, insight, or complexity? Sci Signal. 2008;1:re2.

    Article  PubMed  Google Scholar 

  • Lai KO, Chen Y, Po HM, Lok KC, Gong K, Ip NY. Identification of the Jak/Stat proteins as novel downstream targets of EphA4 signaling in muscle: implications in the regulation of acetylcholinesterase expression. J Biol Chem. 2004;279:13383–92.

    Article  CAS  PubMed  Google Scholar 

  • Lai KO, Ip NY. Synapse development and plasticity: roles of ephrin/Eph receptor signaling. Curr Opin Neurobiol. 2009;19:275–83.

    Article  CAS  PubMed  Google Scholar 

  • Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, Mardinly AR, Hu L, Greer PL, Bikoff JB, Ho HY, et al. EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell. 2010;143:442–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci. 2003;6:153–60.

    Article  CAS  PubMed  Google Scholar 

  • Nie D, Di Nardo A, Han JM, Baharanyi H, Kramvis I, Huynh T, Dabora S, Codeluppi S, Pandolfi PP, Pasquale EB, Sahin M. Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat Neurosci. 2010;13:163–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease. Cell. 2008;133:38–52.

    Article  CAS  PubMed  Google Scholar 

  • Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev. 2010;10:165–80.

    Article  CAS  Google Scholar 

  • Shi L, Fu WY, Hung KW, Porchetta C, Hall C, Fu AK, Ip NY. Alpha2-chimaerin interacts with EphA4 and regulates EphA4-dependent growth cone collapse. Proc Natl Acad Sci USA. 2007;104:16347–52.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Y. Ip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lai, KO., Ip, N.Y. (2018). Eph Receptor. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_428

Download citation

Publish with us

Policies and ethics