Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Phosphatidylinositol 5-Phosphate 4-Kinase

  • Jonathan H. ClarkeEmail author
  • Robin F. Irvine
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_418


Historical Background

Phosphatidylinositol 5-phosphate 4-kinase (PI5P4K) is an enzyme activity capable of converting a monophosphorylated lipid substrate into a bisphosphorylated product, a reaction that is fundamental in the maintenance of the cellular phosphoinositide (PI) cycle. PI5P4K catalyzes the addition of a phosphate group to position D-4 of the inositol head-group of PtdIns5 P (Figs. 1 and 2). Downstream effects of signaling molecules generated by the PI cycle are diverse and include vesicle trafficking, ion channel activity, cytoskeletal dynamics, cell differentiation, proliferation, and apoptosis (Di Paolo and De Camilli 2006; Balla 2016; Viaud et al. 2016).
This is a preview of subscription content, log in to check access.


  1. Anderson RA, Boronenkov IV, Doughman SD, Kunz J, Loijens JC. Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J Biol Chem. 1999;274(15):9907–10.CrossRefPubMedGoogle Scholar
  2. Balla T. Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol Rev. 2016;93:1019–137.CrossRefGoogle Scholar
  3. Bazenet CE, Ruano AR, Brockman JL, Anderson RA. The human erythrocyte contains two forms of phosphatidylinositol-4- phosphate 5-kinase which are differentially active toward membranes. J Biol Chem. 1990;265(29):18012–22.PubMedGoogle Scholar
  4. Boronenkov IV, Anderson RA. The sequence of phosphatidylinositol-4-phosphate 5-kinase defines a novel family of lipid kinases. J Biol Chem. 1995;270(7):2881–4.CrossRefPubMedGoogle Scholar
  5. Bultsma Y, Keune WJ, Divecha N. PIP4Kbeta interacts with and modulates nuclear localization of the high-activity PtdIns5P-4-kinase isoform PIP4Kalpha. Biochem J. 2010;430(2):223–35.CrossRefPubMedGoogle Scholar
  6. Bunce MW, Boronenkov IV, Anderson RA. Coordinated activation of the nuclear ubiquitin ligase Cul3-SPOP by the generation of phosphatidylinositol 5-phosphate. J Biol Chem. 2008;283(13):8678–86.CrossRefPubMedGoogle Scholar
  7. Carricaburu V, Lamia KA, Lo E, Favereaux L, Payrastre B, Cantley LC, et al. The phosphatidylinositol (PI)-5-phosphate 4-kinase type II enzyme controls insulin signaling by regulating PI-3,4,5-trisphosphate degradation. Proc Natl Acad Sci USA. 2003;100(17):9867–72.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Castellino AM, Chao MV. Differential association of phosphatidylinositol-5-phosphate 4-kinase with the EGF/ErbB family of receptors. Cell Signal. 1999;11(3):171–7.CrossRefPubMedGoogle Scholar
  9. Castellino AM, Parker GJ, Boronenkov IV, Anderson RA, Chao MV. A novel interaction between the juxtamembrane region of the p55 tumor necrosis factor receptor and phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem. 1997;272(9):5861–70.CrossRefPubMedGoogle Scholar
  10. Chang JD, Field SJ, Rameh LE, Carpenter CL, Cantley LC. Identification and characterization of a phosphoinositide phosphate kinase homolog. J Biol Chem. 2004;279(12):11672–9.CrossRefPubMedGoogle Scholar
  11. Ciruela A, Hinchliffe KA, Divecha N, Irvine RF. Nuclear targeting of the beta isoform of type II phosphatidylinositol phosphate kinase (phosphatidylinositol 5-phosphate 4-kinase) by its alpha-helix 7. Biochem J. 2000;346(Pt 3):587–91.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Clarke JH, Irvine RF. Evolutionarily conserved structural changes in phosphatidylinositol 5-phosphate 4-kinase (PI5P4K) isoforms are responsible for differences in enzyme activity and localization. Biochem J. 2013;454:49–57.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Clarke JH, Richardson JP, Hinchliffe KA, Irvine RF. Type II PtdInsP kinases: location, regulation and function. Biochem Soc Symp. 2007;74:149–59.CrossRefGoogle Scholar
  14. Clarke JH, Emson PC, Irvine RF. Localization of phosphatidylinositol phosphate kinase IIgamma in kidney to a membrane trafficking compartment within specialized cells of the nephron. Am J Physiol Renal Physiol. 2008;295(5):F1422–30.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Clarke JH, Emson PC, Irvine RF. Distribution and neuronal expression of phosphatidylinositol phosphate kinase II gamma in the mouse brain. J Comp Neurol. 2009;517(3):296–312.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Clarke JH, Wang M, Irvine RF. Localization, regulation and function of type II phosphatidylinositol 5-phosphate 4-kinases. Adv Enzym Regul. 2010;50(1):12–8.CrossRefGoogle Scholar
  17. Clarke JH, Giudici ML, Burke JE, Williams RL, Maloney DJ, Marugan J, Irvine RF. The function of phosphatidylinositol 5-phosphate 4-kinase γ (PI5P4Kγ) explored using a specific inhibitor that targets the PI5P-binding site. Biochem J. 2015;466(2):359–67.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443(7112):651–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Divecha N, Truong O, Hsuan JJ, Hinchliffe KA, Irvine RF. The cloning and sequence of the C isoform of PtdIns4P 5-kinase. Biochem J. 1995;309(Pt 3):715–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Droubi A, Bulley SJ, Clarke JH, Irvine RF. Nuclear localizations of phosphatidylinositol 5-phosphate 4-kinases α and β are dynamic and independently regulated during starvation-induced stress. Biochem J. 2016;473(14):2155–63.CrossRefPubMedGoogle Scholar
  21. Emerling BM, Hurov JB, Poulogiannis G, Tsukazawa KS, Choo-Wing R, Wulf GM, Bell EL, Shim H-S, Lamia KA, Rameh LE, Bellinger G, Sasaki AT, Asara JM, Yuan X, Bullock A, DeNicola GM, Song J, Brown V, Signoretti S, Cantley LC. Depletion of a putatively druggable class of phosphatidylinositol kinases inhibits growth of p53-null tumors. Cell. 2013;155:844–57.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Halstead JR, Jalink K, Divecha N. An emerging role for PtdIns(4,5)P2-mediated signalling in human disease. Trends Pharmacol Sci. 2005;26(12):654–60.CrossRefPubMedGoogle Scholar
  23. Hinchliffe KA, Irvine RF. Regulation of type II PIP kinase by PKD phosphorylation. Cell Signal. 2006;18(11):1906–13.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Hinchliffe KA, Ciruela A, Letcher AJ, Divecha N, Irvine RF. Regulation of type IIalpha phosphatidylinositol phosphate kinase localisation by the protein kinase CK2. Curr Biol. 1999;9(17):983–6.CrossRefPubMedGoogle Scholar
  25. Hinchliffe KA, Giudici ML, Letcher AJ, Irvine RF. Type IIalpha phosphatidylinositol phosphate kinase associates with the plasma membrane via interaction with type I isoforms. Biochem J. 2002;363(Pt 3):563–70.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Huang Z, Guo XX, Chen SX, Alvarez KM, Bell MW, Anderson RE. Regulation of type II phosphatidylinositol phosphate kinase by tyrosine phosphorylation in bovine rod outer segments. Biochemistry. 2001;40(15):4550–9.CrossRefPubMedGoogle Scholar
  27. Itoh T, Ijuin T, Takenawa T. A novel phosphatidylinositol-5-phosphate 4-kinase (phosphatidylinositol- phosphate kinase IIgamma) is phosphorylated in the endoplasmic reticulum in response to mitogenic signals. J Biol Chem. 1998;273(32):20292–9.CrossRefPubMedGoogle Scholar
  28. Jones DR, Bultsma Y, Keune WJ, Halstead JR, Elouarrat D, Mohammed S, et al. Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta. Mol Cell. 2006;23(5):685–95.CrossRefPubMedGoogle Scholar
  29. Kunz J, Wilson MP, Kisseleva M, Hurley JH, Majerus PW, Anderson RA. The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol Cell. 2000;5(1):1–11.CrossRefPubMedGoogle Scholar
  30. Lamia KA, Peroni OD, Kim YB, Rameh LE, Kahn BB, Cantley LC. Increased insulin sensitivity and reduced adiposity in phosphatidylinositol 5-phosphate 4-kinase beta-/- mice. Mol Cell Biol. 2004;24(11):5080–7.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Luoh SW, Venkatesan N, Tripathi R. Overexpression of the amplified Pip4k2beta gene from 17q11-12 in breast cancer cells confers proliferation advantage. Oncogene. 2004;23(7):1354–63.CrossRefPubMedGoogle Scholar
  32. Mackey AM, Sarkes DA, Bettencourt I, Asara JM, Rameh LE. PIP4kγ is a substrate for mTORC1 that maintains basal mTORC1 signaling during starvation. Sci Signal. 2014;7(350):ra104.PubMedPubMedCentralCrossRefGoogle Scholar
  33. McCrea HJ, De Camilli P. Mutations in phosphoinositide metabolizing enzymes and human disease. Physiology (Bethesda). 2009;24:8–16.Google Scholar
  34. Mueller-Roeber B, Pical C. Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol. 2002;130(1):22–46.PubMedPubMedCentralCrossRefGoogle Scholar
  35. O’Connell DJ, Rozenvayn N, Flaumenhaft R. Phosphatidylinositol 4,5-bisphosphate regulates activation-induced platelet microparticle formation. Biochemistry. 2005;44(16):6361–70.CrossRefPubMedGoogle Scholar
  36. Park S, Lee W, You KH, Kim H, Suh JM, Chung HK, et al. Regulation of phosphatidylinositol-phosphate kinase IIgamma gene transcription by thyroid-stimulating hormone in thyroid cells. J Mol Endocrinol. 2001;26(2):127–33.CrossRefPubMedGoogle Scholar
  37. Rameh LE, Tolias KF, Duckworth BC, Cantley LC. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature. 1997;390(6656):192–6.CrossRefPubMedGoogle Scholar
  38. Rao VD, Misra S, Boronenkov IV, Anderson RA, Hurley JH. Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell. 1998;94(6):829–39.CrossRefPubMedGoogle Scholar
  39. Richardson JP, Wang M, Clarke JH, Patel KJ, Irvine RF. Genomic tagging of endogenous type IIbeta phosphatidylinositol 5-phosphate 4-kinase in DT40 cells reveals a nuclear localisation. Cell Signal. 2007;19(6):1309–14.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Rozenvayn N, Flaumenhaft R. Protein kinase C mediates translocation of type II phosphatidylinositol 5-phosphate 4-kinase required for platelet alpha-granule secretion. J Biol Chem. 2003;278(10):8126–34.CrossRefPubMedGoogle Scholar
  41. Schleiermacher G, Bourdeaut F, Combaret V, Picrron G, Raynal V, Aurias A, et al. Stepwise occurrence of a complex unbalanced translocation in neuroblastoma leading to insertion of a telomere sequence and late chromosome 17q gain. Oncogene. 2005;24(20):3377–84.CrossRefPubMedGoogle Scholar
  42. Singhal RL, Prajda N, Yeh YA, Weber G. 1-phosphatidylinositol 4-phosphate 5-kinase (EC a proliferation- and malignancy-linked signal transduction enzyme. Cancer Res. 1994;54(21):5574–8.PubMedGoogle Scholar
  43. Stopkova P, Saito T, Fann CS, Papolos DF, Vevera J, Paclt I, et al. Polymorphism screening of PIP5K2A: a candidate gene for chromosome 10p-linked psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet. 2003;123B(1):50–8.CrossRefPubMedGoogle Scholar
  44. Toker A. Phosphoinositides and signal transduction. Cell Mol Life Sci. 2002;59(5):761–79.CrossRefPubMedGoogle Scholar
  45. Viaud J, Mansour R, Antkowiak A, Mujalli A, Valet C, Chicanne G, Xuereb J-M, Terrisse A-D, Severin S, Gratacap M-P, Gaits-Iacovoni F, Payrastre B. Phosphoinositides: important lipids in the coordination of cell dynamics. Biochimie. 2016;125:250–8.CrossRefPubMedGoogle Scholar
  46. Vicinanza M, Korolchuk VI, Ashkenazi A, Puri C, Menzies FM, Clarke JH, Rubinsztein DC. PI(5)P regulates autophagosome biogenesis. Mol Cell. 2015;57:219–34.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Voss MD, Czechtizky W, Li Z, Rudolph C, Petry S, Brummerhop H, Langer T, Schiffer A, Schaefer H-L. Discovery and pharmacological characterization of a novel small molecule inhibitor of phosphatidylinositol-5-phosphate 4-kinase, type II, beta. Biochem Biophys Res Commun. 2014;449(3):327–31.CrossRefPubMedGoogle Scholar
  48. Wang M, Bond NJ, Letcher AJ, Richardson JP, Lilley KS, Irvine RF, et al. Genomic tagging reveals a random association of endogenous PtdIns5P 4-kinases IIalpha and IIbeta and a partial nuclear localization of the IIalpha isoform. Biochem J. 2010;430(2):215–21.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Alzheimer’s Research UK Cambridge Drug Discovery Institute, Cambridge Biomedical CampusUniversity of CambridgeCambridgeUK
  2. 2.Department of PharmacologyUniversity of CambridgeCambridgeUK