Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Glycogen Synthase Kinase-3

  • James WoodgettEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_378


Historical Background

Glycogen synthase kinase-3 (GSK-3) is a highly conserved protein-serine/threonine kinase that was first isolated from skeletal muscle in 1980 as one of five enzymes capable of phosphorylating glycogen synthase (Embi et al. 1980). In resting tissues, GSK-3 phosphorylation inhibits glycogen synthase, the rate-limiting enzyme of glycogen synthesis. In subsequent work, insulin was found to cause inactivation of GSK-3 (via induction of PKB/Akt) and this relieves the suppression of glycogen synthase, leading to enhanced glucose conversion into glycogen in response to insulin. In mammals GSK-3 is encoded by two genes that generate highly related proteins termed GSK-3α and GSK-3β that have molecular masses of 51 and 46 kDa, respectively. In brain, the GSK-3βgene...

This is a preview of subscription content, log in to check access.


  1. Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF, Newton IG, Giles FJ, Durocher J, Creusot RS, Karimi M, Jones C, Zehnder JL, Keating A, Negrin RS, Weissman IL, Jamieson CH. Glycogen synthase kinase-3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci U S A. 2009;106:3925–9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allon LT, Pietrokovski S, Barkan S, Avrahami L, Kaidanovich-Beilin O, Woodgett JR, Barnea A, Eldar-Finkelman H. Selective loss of glycogen synthase kinase-3a in birds reveals distinct roles for GSK-3 isozymes in tau phosphorylation. FEBS Lett. 2011;585:1158–62.CrossRefGoogle Scholar
  3. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442:823–6.PubMedCrossRefGoogle Scholar
  4. Doble BW, Woodgett JR. Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions. Cells Tissues Organs. 2007;185:73–84.PubMedCrossRefGoogle Scholar
  5. Doble BW, Patel S, Wood GA, Kockeritz LK, Woodgett JR. Functional redundancy of GSK-3alpha and GSK-3beta in Wnt/beta-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev Cell. 2007;12:957–71.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980;107:519–27.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Forde JE, Dale TC. Glycogen synthase kinase 3: a key regulator of cellular fate. Cell Mol Life Sci. 2007;64:1930–44.PubMedCrossRefGoogle Scholar
  8. Hoeflich KP, Luo J, Rubie EA, Tsao M-S, Jin O, Woodgett JR. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 2000;406:86–90.PubMedCrossRefGoogle Scholar
  9. Jiang J, Hui CC. Hedgehog signaling in development and cancer. Dev Cell. 2008;15:801–12.PubMedCrossRefGoogle Scholar
  10. Kim WY, Wang X, Wu Y, Doble BW, Patel S, Woodgett JR, Snider WD. GSK-3 is a master regulator of neural progenitor homeostasis. Nat Neurosci. 2009;12:1390–7.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A. 1996;93:8455–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Li M, Wang X, Meintzer MK, Laessig T, Birnbaum MJ, Heidenreich KA. Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta. Mol Cell Biol. 2000;20:9356–63.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Lochhead PA, Kinstrie R, Sibbet G, Rawjee T, Morrice N, Cleghon V. A chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation. Mol Cell. 2006;24:627–33.PubMedCrossRefGoogle Scholar
  14. MacAulay K, Doble BW, Patel S, Hansotia T, Sinclair EM, Drucker DJ, Nagy A, Woodgett JR. Glycogen synthase kinase 3 alpha-specific regulation of murine hepatic glycogen metabolism. Cell Metab. 2007;6:329–37.PubMedCrossRefGoogle Scholar
  15. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004;10:55–63.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Thornton TM, Pedraza-Alva G, Deng B, Wood CD, Aronshtam A, Clements JL, Sabio G, Davis RJ, Matthews DE, Doble B, Rincon M. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science. 2008;320:667–70.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/Factor A. EMBO J. 1990;9:2431–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ying QL, Wray J, Nichols J, Batle-Morera L, Doble B, Woodgett J, Cohen P, Smith A. The ground state of embryonic stem cell renewal. Nature. 2008;453:519–23.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X. A dual kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005;438:873–7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Samuel Lunenfeld Research Institute, Mount Sinai Hospital and Department of Medical BiophysicsUniversity of TorontoTorontoCanada