Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Aaron M. RobitailleEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_331


Historical Background

The mammalian target of rapamycin (mTOR) is a Ser/Thr kinase structurally and functionally conserved from yeast to humans that positively regulates cell growth, proliferation, and survival, while inhibition of mTOR signaling extends lifespan (Harrison et al. 2009). In eukaryotes, mTOR is ubiquitously expressed and whole-organism knockout has demonstrated that it is essential for cell growth and viability. mTOR forms two multiprotein complexes, namely, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). The macrolide rapamycin acutely inhibits mTORC1 but not mTORC2. mTORC1 and mTORC2 regulate functionally distinct, yet partially overlapping, signaling networks that collectively control the spatial and temporal regulation of cell growth.

Nutrients and growth factors activate mTORC1, whereas low cellular energy levels or stress...

This is a preview of subscription content, log in to check access.



I offer my regrets to our colleagues whose excellent work I could not described due to space limitations. I acknowledge the Werner-Siemens Foundation for funding support and M.N. Hall for advice and the general figure template.


  1. Charest PG, Shen Z, Lakoduk A, Sasaki AT, Briggs SP, Firtel RA. A Ras signaling complex controls the RasC-TORC2 pathway and directed cell migration. Dev Cell. 2010;18(5):737–49.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Cybulski N, Hall MN. TOR complex 2: a signaling pathway of its own. Trends Biochem Sci. 2009;34(12):620–7.CrossRefPubMedGoogle Scholar
  3. Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen JH, et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell. 2009;15(2):148–59.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–5.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Huber A, Bodenmiller B, Uotila A, Stahl M, Wanka S, Gerrits B, et al. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev. 2009;23(16):1929–43.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Jacinto E, Lorberg A. TOR regulation of AGC kinases in yeast and mammals. Biochem J. 2008;410(1):19–37.CrossRefPubMedGoogle Scholar
  7. Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA, et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med. 2010;16(2):205–13.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20(7):1992–2003.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Koren I, Reem E, Kimchi A. DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr Biol. 2010;20(12):1093–8.CrossRefPubMedGoogle Scholar
  10. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122(Pt 20):3589–94.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Ma XM, Yoon SO, Richardson CJ, Julich K, Blenis J. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell. 2008;133(2):303–13.CrossRefPubMedGoogle Scholar
  12. Michels AA, Robitaille AM, Buczynski-Ruchonnet D, Hodroj W, Reina JH, Hall MN, et al. mTORC1 directly phosphorylates and regulates human MAF1. Mol Cell Biol. 2010;30(15):3749–57.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Pearce LR, Komander D, Alessi DR. The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol. 2010;11(1):9–22.CrossRefPubMedGoogle Scholar
  14. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137(5):873–86.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Polak P, Hall MN. mTOR and the control of whole body metabolism. Curr Opin Cell Biol. 2009;21(2):209–18.CrossRefPubMedGoogle Scholar
  16. Robitaille AM, Hall MN. mTOR. UCSD-Nature Molecule Pages. 2008. http://www.signaling-gateway.org/molecule/query?afcsid=A000094. Accessed 15 Oct 2008.
  17. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141(2):290–303.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Shor B, Wu J, Shakey Q, Toral-Barza L, Shi C, Follettie M, Yu K. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. JBC. 2010;285:15380–92.CrossRefGoogle Scholar
  19. Sparks CA, Guertin DA. Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene. 2010;29(26):3733–44.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7(2):85–96.CrossRefPubMedGoogle Scholar
  21. Yan L, Mieulet V, Burgess D, Findlay GM, Sully K, Procter J, et al. PP2A T61 epsilon is an inhibitor of MAP4K3 in nutrient signaling to mTOR. Mol Cell. 2010;37(5):633–42.CrossRefPubMedGoogle Scholar
  22. Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell. 2011;144(5):757–68.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Growth and Development, BiozentrumUniversity of BaselBaselSwitzerland