Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

MAP Kinase-Activated Protein Kinase 5 (MK5)

  • Manoj B. MenonEmail author
  • Alexey Kotlyarov
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_321


Historical Background

Murine and human MK5 cDNAs were initially isolated in 1998 in two independent screens for proteins with sequence homology to MK2 (New et al. 1998; Ni et al. 1998). The novel 54-kDa kinase ubiquitously expressed in all tissues displayed 45% amino acid identity to MK2. Both groups showed that MK5 could be phosphorylated and activated in vitro by the p38 MAP kinase, as detected by 32P incorporation into a substrate peptide (KKRPQRATSNVFS) or Hsp25 (HSPB1). New et al. named this kinase as p38-regulated and activated kinase or PRAK to emphasize its integration into the p38 pathway. More recently, MK5 has also been shown to interact with the atypical MAP kinases, ERK3 (MAPK6) and ERK4 (MAPK4), and these kinases are also involved in the phosphorylation and activation of MK5 (Schumacher et al. 2004; Seternes et al. 2004; Aberg et al. 2006; Kant et al. 2006). An MK5 gene does not appear to be present in either C. elegans or Drosophila...

This is a preview of subscription content, log in to check access.


  1. Aberg E, Perander M, Johansen B, Julien C, Meloche S, Keyse SM, et al. Regulation of MAPK-activated protein kinase 5 activity and subcellular localization by the atypical MAPK ERK4/MAPK4. J Biol Chem. 2006;281:35499–510.  https://doi.org/10.1074/jbc.M606225200.CrossRefPubMedGoogle Scholar
  2. Brand F, Schumacher S, Kant S, Menon MB, Simon R, Turgeon B, et al. The extracellular signal-regulated kinase 3 (mitogen-activated protein kinase 6 [MAPK6])-MAPK-activated protein kinase 5 signaling complex regulates septin function and dendrite morphology. Mol Cell Biol. 2012;32:2467–78.  https://doi.org/10.1128/MCB.06633-11.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chow KT, Timblin GA, McWhirter SM, Schlissel MS. MK5 activates Rag transcription via Foxo1 in developing B cells. J Exp Med. 2013;210:1621–34.  https://doi.org/10.1084/jem.20130498.CrossRefPubMedPubMedCentralGoogle Scholar
  4. De la Mota-Peynado A, Chernoff J, Beeser A. Identification of the atypical MAPK Erk3 as a novel substrate for p21-activated kinase (Pak) activity. J Biol Chem. 2011;286:13603–11.  https://doi.org/10.1074/jbc.M110.181743.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Deleris P, Trost M, Topisirovic I, Tanguay PL, Borden KL, Thibault P, et al. Activation loop phosphorylation of ERK3/ERK4 by group I p21-activated kinases (PAKs) defines a novel PAK-ERK3/4-MAPK-activated protein kinase 5 signaling pathway. J Biol Chem. 2011;286:6470–8.  https://doi.org/10.1074/jbc.M110.181529.CrossRefPubMedGoogle Scholar
  6. Dingar D, Benoit MJ, Mamarbachi AM, Villeneuve LR, Gillis MA, Grandy S, et al. Characterization of the expression and regulation of MK5 in the murine ventricular myocardium. Cell Signal. 2010;22:1063–75.  https://doi.org/10.1016/j.cellsig.2010.02.009.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dwyer SF, Gelman IH. Cross-phosphorylation and interaction between Src/FAK and MAPKAP5/PRAK in early focal adhesions controls cell motility. J Cancer Biol Res. 2014;2(1):1045.Google Scholar
  8. Gaestel M. MAPKAP kinases - MKs - two’s company, three’s a crowd. Nat Rev Mol Cell Biol. 2006;7:120–30.  https://doi.org/10.1038/nrm1834.CrossRefPubMedGoogle Scholar
  9. Gerits N, Mikalsen T, Kostenko S, Shiryaev A, Johannessen M, Moens U. Modulation of F-actin rearrangement by the cyclic AMP/cAMP-dependent protein kinase (PKA) pathway is mediated by MAPK-activated protein kinase 5 and requires PKA-induced nuclear export of MK5. J Biol Chem. 2007a;282:37232–43.  https://doi.org/10.1074/jbc.M704873200.CrossRefPubMedGoogle Scholar
  10. Gerits N, Van Belle W, Moens U. Transgenic mice expressing constitutive active MAPKAPK5 display gender-dependent differences in exploration and activity. Behav Brain Funct. 2007b;3:58.  https://doi.org/10.1186/1744-9081-3-58.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kant S, Schumacher S, Singh MK, Kispert A, Kotlyarov A, Gaestel M. Characterization of the atypical MAPK ERK4 and its activation of the MAPK-activated protein kinase MK5. J Biol Chem. 2006;281:35511–9.  https://doi.org/10.1074/jbc.M606693200.CrossRefPubMedGoogle Scholar
  12. Kostenko S, Jensen KL, Moens U. Phosphorylation of heat shock protein 40 (Hsp40/DnaJB1) by mitogen-activated protein kinase-activated protein kinase 5 (MK5/PRAK). Int J Biochem Cell Biol. 2014;47:29–37.  https://doi.org/10.1016/j.biocel.2013.11.004.CrossRefPubMedGoogle Scholar
  13. Kostenko S, Shiryaev A, Gerits N, Dumitriu G, Klenow H, Johannessen M, et al. Serine residue 115 of MAPK-activated protein kinase MK5 is crucial for its PKA-regulated nuclear export and biological function. Cell Mol Life Sci. 2011;68:847–62.  https://doi.org/10.1007/s00018-010-0496-2.CrossRefPubMedGoogle Scholar
  14. Kress TR, Cannell IG, Brenkman AB, Samans B, Gaestel M, Roepman P, et al. The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. Mol Cell. 2011;41:445–57.  https://doi.org/10.1016/j.molcel.2011.01.023.CrossRefPubMedCentralPubMedGoogle Scholar
  15. New L, Jiang Y, Zhao M, Liu K, Zhu W, Flood LJ, et al. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J. 1998;17:3372–84.  https://doi.org/10.1093/emboj/17.12.3372.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ni H, Wang XS, Diener K, Yao Z. MAPKAPK5, a novel mitogen-activated protein kinase (MAPK)-activated protein kinase, is a substrate of the extracellular-regulated kinase (ERK) and p38 kinase. Biochem Biophys Res Commun. 1998;243:492–6.  https://doi.org/10.1006/bbrc.1998.8135.CrossRefPubMedGoogle Scholar
  17. Ronkina N, Johansen C, Bohlmann L, Lafera J, Menon MB, Tiedje C, et al. Comparative analysis of two gene-targeting approaches challenges the tumor-suppressive role of the protein kinase MK5/PRAK. PLoS One. 2015;10:e0136138.  https://doi.org/10.1371/journal.pone.0136138.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Schumacher S, Laass K, Kant S, Shi Y, Visel A, Gruber AD, et al. Scaffolding by ERK3 regulates MK5 in development. EMBO J. 2004;23:4770–9.  https://doi.org/10.1038/sj.emboj.7600467.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Seternes OM, Johansen B, Hegge B, Johannessen M, Keyse SM, Moens U. Both binding and activation of p38 mitogen-activated protein kinase (MAPK) play essential roles in regulation of the nucleocytoplasmic distribution of MAPK-activated protein kinase 5 by cellular stress. Mol Cell Biol. 2002;22:6931–45.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Seternes OM, Mikalsen T, Johansen B, Michaelsen E, Armstrong CG, Morrice NA, et al. Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway. EMBO J. 2004;23:4780–91.  https://doi.org/10.1038/sj.emboj.7600489.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Shi Y, Kotlyarov A, Laabeta K, Gruber AD, Butt E, Marcus K, et al. Elimination of protein kinase MK5/PRAK activity by targeted homologous recombination. Mol Cell Biol. 2003;23:7732–41.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Shiryaev A, Kostenko S, Dumitriu G, Moens U. Septin 8 is an interaction partner and in vitro substrate of MK5. World J Biol Chem. 2012;3:98–109.  https://doi.org/10.4331/wjbc.v3.i5.98.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sun P, Yoshizuka N, New L, Moser BA, Li Y, Liao R, et al. PRAK is essential for ras-induced senescence and tumor suppression. Cell. 2007;128:295–308.  https://doi.org/10.1016/j.cell.2006.11.050.CrossRefPubMedGoogle Scholar
  24. Tak H, Jang E, Kim SB, Park J, Suk J, Yoon YS, et al. 14-3-3epsilon inhibits MK5-mediated cell migration by disrupting F-actin polymerization. Cell Signal. 2007;19:2379–87.  https://doi.org/10.1016/j.cellsig.2007.07.016.CrossRefPubMedGoogle Scholar
  25. Tang J, Liu J, Li X, Zhong Y, Zhong T, Liu Y, et al. PRAK interacts with DJ-1 and prevents oxidative stress-induced cell death. Oxidative Med Cell Longev. 2014;2014:735618.  https://doi.org/10.1155/2014/735618.CrossRefGoogle Scholar
  26. Toska K, Kleppe R, Armstrong CG, Morrice NA, Cohen P, Haavik J. Regulation of tyrosine hydroxylase by stress-activated protein kinases. J Neurochem. 2002;83:775–83.CrossRefPubMedGoogle Scholar
  27. Yi T, Zhai B, Yu Y, Kiyotsugu Y, Raschle T, Etzkorn M, et al. Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci USA. 2014;111:E2182–90.  https://doi.org/10.1073/pnas.1404943111.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Zheng H, Seit-Nebi A, Han X, Aslanian A, Tat J, Liao R, et al. A posttranslational modification cascade involving p38, Tip60, and PRAK mediates oncogene-induced senescence. Mol Cell. 2013;50:699–710.  https://doi.org/10.1016/j.molcel.2013.04.013.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Zheng M, Wang YH, Wu XN, Wu SQ, Lu BJ, Dong MQ, et al. Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat Cell Biol. 2011;13:263–72.  https://doi.org/10.1038/ncb2168.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Cell Biochemistry, Hannover Medical School (MHH)HannoverGermany
  2. 2.Institute of Physiological Chemistry, Hannover Medical School (MHH)HannoverGermany