Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

MYC

  • María Victoria Ruiz-Pérez
  • Anna Frenzel
  • Marie Arsenian Henriksson
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_319

Synonyms

Historical Background

The first MYC gene was identified in the late 1970s in the avian acute leukemia virus MC29. This virus was known to cause a range of malignancies and the sequence in the viral genome responsible for the transforming capacity was named v-myc (short for viral myelocytomatosis, a leukemia caused by the virus). In 1979, a cellular homologue was identified in several species and was subsequently called c-MYC, where “c” denotes cellular. In contrast to other oncogenes known at the time, MYCdid not seem to be activated by point mutations in the coding sequence. Instead studies in the early 1980s led to the identification of three novel mechanisms of oncogene activation: insertional mutagenesis (virus integration into the host genome at or near proto-oncogenes resulting in high levels of expression driven by the viral promoter), chromosomal translocation, and gene amplification (see also “MYC in Cancer”...

This is a preview of subscription content, log in to check access.

References

  1. Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol. 2005;6:635–45.Google Scholar
  2. Adhikary S, Marinoni F, Hock A, Hulleman E, Popov N, Beier R, Bernard S, Quarto M, Capra M, Goettig S, Kogel U, Scheffner M, Helin K, Eilers M. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell. 2005;123:409–21.Google Scholar
  3. Albihn A, Johnsen JI, Henriksson MA. MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res. 2010;107:163–224.Google Scholar
  4. Altman BJ, Hsieh AL, Sengupta A, Krishnanaiah SY, Stine ZE, Walton ZE, Gouw AM, Venkataraman A, Li B, Goraksha-Hicks P, Diskin SJ, Bellovin DI, Simon MC, Rathmell JC, Lazar MA, Maris JM, Felsher DW, Hogenesch JB, Weljie AM, Dang CV. MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab. 2015;22:1009–19.PubMedPubMedCentralGoogle Scholar
  5. Bui TV, Mendell JT. Myc: meastro of microRNAs. Genes Cancer. 2010;1:568–75.PubMedPubMedCentralGoogle Scholar
  6. Cole MD, Cowling VH. Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol. 2008;9:810–5.Google Scholar
  7. Conacci-Sorrell M, Eisenman RN. Post-translational control of Myc function during differentiation. Cell Cycle. 2011;10:604–10.PubMedPubMedCentralGoogle Scholar
  8. Cowling VH, Cole MD. Mechanism of transcriptional activation by the Myc oncoproteins. Semin Cancer Biol. 2006;16:242–52.Google Scholar
  9. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. 2006;16:253–64.Google Scholar
  10. Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res. 2009;15:6479–83.PubMedPubMedCentralGoogle Scholar
  11. Diolaiti D, McFerrin L, Carroll PA, Eisenman RN. Functional interactions among members of the MAX and MLX transcriptional network during oncogenesis. Biochim Biophys Acta. 2015;1849:484–500.Google Scholar
  12. Eilers M, Eisenman RN. Myc’s broad reach. Genes Dev. 2008;22:2755–66.PubMedPubMedCentralGoogle Scholar
  13. Felsher DW. MYC inactivation elicits oncogene addiction through both tumor cell-intrinsic and host-dependent mechanisms. Genes Cancer. 2010;1:597–604.PubMedPubMedCentralGoogle Scholar
  14. Fletcher S, Prochownik EV. Small-molecule inhibitors of the Myc oncoprotein. Biochim Biophys Acta. 2015;1849:525–43.Google Scholar
  15. González-Prieto R, Cuijpers SA, Kumar R, Hendriks IA, Vertegaal AC. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. Cell Cycle. 2015;14:1859–72.PubMedPubMedCentralGoogle Scholar
  16. Guccione E, Martinato F, Finocchiaro G, Luzi L, Tizzoni L, Dall’Olio V, Zardo G, Nervi C, Bernard L, Amati B. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol. 2006;8:764–70.Google Scholar
  17. Hann SR. Role of post-translational modifications in regulating c-Myc proteolysis, transcriptional activity and biological function. Semin Cancer Biol. 2006;16:288–302.Google Scholar
  18. Hatton KS, Mahon K, Chin L, Chiu F-C, Lee H-W, Peng D, Morgenbesser SD, Horner J, DePinho RA. Expression and activity of L-Myc in normal mouse development. Mol Cell Biol. 1996;16:1794–804.PubMedPubMedCentralGoogle Scholar
  19. Henriksson M, Bakardjiev A, Klein G, Lüscher B. Phosphorylation sites mapping in the N-terminal domain of c-myc modulate its transforming potential. Oncogene. 1993;8:3199–209.Google Scholar
  20. Henriksson M, Lüscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res. 1996;68:109–82.Google Scholar
  21. Herkert B, Eilers M. Transcriptional repression: the dark side of Myc. Genes Cancer. 2010;1:580–6.PubMedPubMedCentralGoogle Scholar
  22. Herold S, Herkert B, Eilers M. Facilitating replication under stress: an oncogenic function of MYC? Nat Rev Cancer. 2009;9:441–4.Google Scholar
  23. Hoffman B, Liebermann DA. Apoptotic signaling by c-MYC. Oncogene. 2008;27:6462–72.Google Scholar
  24. Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J, Hubbard GB, Ikeno Y, Zhang Y, Feng B, Li X, Serre T, Qi W, Van Remmen H, Miller RA, Bath KG, de Cabo R, Xu H, Neretti N, Sedivy M. Reduced expression of MYC increases longevity and enhances healthspan. Cell. 2015;160:477–88.PubMedPubMedCentralGoogle Scholar
  25. Kress TR, Sabò A, Amati B. MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer. 2015;15:593–607.Google Scholar
  26. Larsson LG, Henriksson MA. The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res. 2010;316:1429–37.Google Scholar
  27. Laurenti E, Wilson A, Trumpp A. Myc’s other life: stem cells and beyond. Curr Opin Cell Biol. 2009;21:844–54.Google Scholar
  28. Lin CY, Lovén J, Rahl PB, Paranal RM, Burge CB, Bradner JE, Lee TI, Young RA. Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 2012;151:56–67.PubMedPubMedCentralGoogle Scholar
  29. Lorenzin F, Benary U, Baluapuri A, Walz S, Jung LA, von Eyss B, Kisker C, Wolf J, Eilers M, Wolf E. Different promoter affinities account for specificity in MYC-dependent gene regulation. Elizab Theatr. 2016;pii:e15161.Google Scholar
  30. Lüscher B, Larsson LG. The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation. Oncogene. 1999;18:2955–66.Google Scholar
  31. Mei Z, Zhang D, Hu B, Wang J, Shen X, XIao W. FBXO32 targets c-Myc for proteasomal degradation and inhibits c-Myc activity. J Biol Chem. 2015;290:16202–14.PubMedPubMedCentralGoogle Scholar
  32. Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, Wang R, Green DR, Tessarollo L, Casellas R, Zhao K. Levens D c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell. 2012;151:68–79.PubMedPubMedCentralGoogle Scholar
  33. Pelengaris S, Khan M. The c-MYC oncoprotein as a treatment target in cancer and other disorders of cell growth. Expert Opin Ther Targets. 2003;7:623–42.Google Scholar
  34. Prochownik EV, Vogt PK. Therapeutic targeting of Myc. Genes Cancer. 2010;1:650–9.PubMedPubMedCentralGoogle Scholar
  35. Scognamiglio R, Cabezas-Wallscheid N, Thier MC, Altamura S, Reyes A, Prendergast AM, Baumgärtner D, Carnevalli LS, Atzberger A, Haas S, von Paleske L, Boroviak T, Wörsdörfer P, Essers MAG, Kloz U, Eisenman RN, Edenhofer F, Bertone P, Huber W, van der Hoeven F, Smith A, Trumpp A. Myc depletion induces a pluripotent dormant state mimicking diapause. Cell. 2016;164:668–80.PubMedPubMedCentralGoogle Scholar
  36. Sodir NM, Evan GI. Nursing some sense out of Myc. J Biol. 2009;8:77.PubMedPubMedCentralGoogle Scholar
  37. van Riggelen J, Yetil A, Felsher DW. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer. 2010;10:301–9.Google Scholar
  38. Vervoorts J, Luscher-Firzlaff J, Luscher B. The ins and outs of MYC regulation by posttranslational mechanisms. J Biol Chem. 2006;281:34725–9.Google Scholar
  39. Vita M, Henriksson M. The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol. 2006;16:318–30.Google Scholar
  40. Wasylishen AR, Penn LZ. Myc: the beauty and the beast. Genes Cancer. 2010;1:532–41.PubMedPubMedCentralGoogle Scholar
  41. Wierstra I, Alves J. The c-myc promoter: still MysterY and challenge. Adv Cancer Res. 2008;99:113–333.Google Scholar
  42. Wolf E, Lin CY, Eilers M, Levens DL. Taming of the beast: shaping Myc-dependent amplification. Trends Cell Biol. 2015;25:241–8.Google Scholar
  43. Zhang X, Choi PS, Francis JM, Imielinski M, Watanabe H, Cherniack AD, Meyerson M. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat Genet. 2016;48:176–82.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • María Victoria Ruiz-Pérez
    • 1
  • Anna Frenzel
    • 1
  • Marie Arsenian Henriksson
    • 1
  1. 1.Department of Microbiology, Tumor and Cell Biology (MTC)Karolinska InstitutetStockholmSweden