Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

CD160

  • Armand Bensussan
  • Anne Marie-Cardine
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_31

Synonyms

 BY55

Historical Background

NK lymphocytes recognize abnormal or aberrant cells through multiple receptors that detect normal host molecules, as well as stress-induced or pathogen-expressed motifs (Lanier 2005; Long et al. 2013). Individual NK cells express both activating and inhibitory receptors, which together drive the specificity towards target cells.

The NK cell inhibitory receptors have been classified into three groups, namely, the heterodimeric CD94/NKG2A, the Ig-like transcript (ILT) receptors, and the members of the killer cell Ig-like receptors (KIRs). All of them bind to classical or nonclassical MHC-class I molecules. A common characteristic of the inhibitory receptors is the presence of immunoreceptor tyrosine-based inhibition motif(s) (ITIM) within their intracellular tail. Following engagement by their ligands, the inhibitory receptors become phosphorylated on the tyrosine residue(s) present in the ITIM(s), creating docking sites for the SH2-domains of the...

This is a preview of subscription content, log in to check access.

References

  1. Abecassis S, Giustiniani J, Meyer N, Schiavon V, Ortonne N, Campillo JA, et al. Identification of a novel CD160+ CD4+ T-lymphocyte subset in the skin: a possible role for CD160 in skin inflammation. J Invest Dermatol. 2007;127:1161–6.  https://doi.org/10.1038/sj.jid.5700680.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agrawal S, Marquet J, Freeman GJ, Tawab A, Bouteiller PL, Roth P, et al. Cutting edge: MHC class I triggering by a novel cell surface ligand costimulates proliferation of activated human T cells. J Immunol. 1999;162:1223–6.PubMedPubMedCentralGoogle Scholar
  3. Anumanthan A, Bensussan A, Boumsell L, Christ AD, Blumberg RS, Voss SD, et al. Cloning of BY55, a novel Ig superfamily member expressed on NK cells, CTL, and intestinal intraepithelial lymphocytes. J Immunol. 1998;161:2780–90.PubMedPubMedCentralGoogle Scholar
  4. Arnon TI, Markel G, Mandelboim O. Tumor and viral recognition by natural killer cells receptors. Semin Cancer Biol. 2006;16:348–58.  https://doi.org/10.1016/j.semcancer.2006.07.005.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barakonyi A, Rabot M, Marie-Cardine A, Aguerre-Girr M, Polgar B, Schiavon V, et al. Cutting edge: engagement of CD160 by its HLA-C physiological ligand triggers a unique cytokine profile secretion in the cytotoxic peripheral blood NK cell subset. J Immunol. 2004;173:5349–54.PubMedCrossRefGoogle Scholar
  6. Cai G, Anumanthan A, Brown JA, Greenfield EA, Zhu B, Freeman GJ. CD160 inhibits activation of human CD4+ T cells through interaction with herpesvirus entry mediator. Nat Immunol. 2008;9:176–85.  https://doi.org/10.1038/ni1554.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chabot S, Jabrane-Ferrat N, Bigot K, Tabiasco J, Provost A, Golzio M, et al. A novel antiangiogenic and vascular normalization therapy targeted against human CD160 receptor. J Exp Med. 2011;208:973–86.  https://doi.org/10.1084/jem.20100810.CrossRefPubMedPubMedCentralGoogle Scholar
  8. El-Far M, Pellerin C, Pilote L, Fortin JF, Lessard IA, Peretz Y, et al. CD160 isoforms and regulation of CD4 and CD8 T-cell responses. J Transl Med. 2014;12:217.  https://doi.org/10.1186/s12967-014-0217-y.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fons P, Chabot S, Cartwright JE, Lenfant F, L'Faqihi F, Giustiniani J, et al. Soluble HLA-G1 inhibits angiogenesis through an apoptotic pathway and by direct binding to CD160 receptor expressed by endothelial cells. Blood. 2006;108:2608–15.  https://doi.org/10.1182/blood-2005-12-019919.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Giustiniani J, Alaoui SS, Marie-Cardine A, Bernard J, Olive D, Bos C, et al. Possible pathogenic role of the transmembrane isoform of CD160 NK lymphocyte receptor in Paroxysmal Nocturnal Hemoglobinuria. Curr Mol Med. 2012;12;188–98. doi:http://www.eurekaselect.com/76105/article#.Google Scholar
  11. Giustiniani J, Marie-Cardine A, Bensussan A. A soluble form of the MHC class I-specific CD160 receptor is released from human activated NK lymphocytes and inhibits cell-mediated cytotoxicity. J Immunol. 2007;178:1293–300.PubMedCrossRefGoogle Scholar
  12. Giustiniani J, Bensussan A, Marie-Cardine A. Identification and characterization of a transmembrane isoform of CD160 (CD160-TM), a unique activating receptor selectively expressed upon human NK cell activation. J Immunol. 2009;182:63–71.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gonzalez S, Groh V, Spies T. Immunobiology of human NKG2D and its ligands. Curr Top Microbiol Immunol. 2006;298:121–38.PubMedPubMedCentralGoogle Scholar
  14. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–74.  https://doi.org/10.1146/annurev.immunol.23.021704.115526.CrossRefPubMedGoogle Scholar
  15. Lanier LL, Corliss B, Wu J, Phillips JH. Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity. 1998;8:693–701.PubMedCrossRefGoogle Scholar
  16. Le Bouteiller P, Barakonyi A, Giustiniani J, Lenfant F, Marie-Cardine A, Aguerre-Girr M, et al. Engagement of CD160 receptor by HLA-C is a triggering mechanism used by circulating natural killer (NK) cells to mediate cytotoxicity. Proc Natl Acad Sci U S A. 2002;99:16963–8.  https://doi.org/10.1073/pnas.012681099.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell responses: Integration of signals for activation and inhibition. Annu Rev Immunol. 2013;31:227–58.  https://doi.org/10.1146/annurev-immunol-020711-075005.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Maeda M, Carpenito C, Russell RC, Dasanjh J, Veinotte LL, Ohta H, et al. Murine CD160, Ig-like receptor on NK cells and NKT cells, recognizes classical and nonclassical MHC class I and regulates NK cell activation. J Immunol. 2005;175:4426–32.PubMedCrossRefGoogle Scholar
  19. Maiza H, Leca G, Mansur IG, Schiavon V, Boumsell L, Bensussan A. A novel 80-kD cell surface structure identifies human circulating lymphocytes with natural killer activity. J Exp Med. 1993;178:1121–6.PubMedCrossRefGoogle Scholar
  20. Moretta A, Biassoni R, Bottino C, Mingari MC, Moretta L. Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis. Immunol Today. 2000;21:228–34.PubMedCrossRefGoogle Scholar
  21. Nikolova M, Marie-Cardine A, Boumsell L, Bensussan A. BY55/CD160 acts as a co-receptor in TCR signal transduction of a human circulating cytotoxic effector T lymphocyte subset lacking CD28 expression. Int Immunol. 2002;14:445–51.PubMedCrossRefGoogle Scholar
  22. Nikolova M, Lelievre JD, Carriere M, Bensussan A, Levy Y. Regulatory T cells differentially modulate the maturation and apoptosis of human CD8+ T-cell subsets. Blood. 2009;113:4556–65.  https://doi.org/10.1182/blood-2008-04-151407.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Olcese L, Cambiaggi A, Semenzato G, Bottino C, Moretta A, Vivier E. Human killer cell activatory receptors for MHC class I molecules are included in a multimeric complex expressed by natural killer cells. J Immunol. 1997;158:5083–6.PubMedPubMedCentralGoogle Scholar
  24. Ortonne N, Ram-Wolff C, Giustiniani J, Marie-Cardine A, Bagot M, Mecheri S, et al. Human and mouse mast cells express and secrete the GPI-anchored isoform of CD160. J Invest Dermatol. 2011;131:916–24.  https://doi.org/10.1038/jid.2010.412.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Rabot M, El Costa H, Polgar B, Marie-Cardine A, Aguerre-Girr M, Barakonyi A, et al. CD160-activating NK cell effector functions depend on the phosphatidylinositol 3-kinase recruitment. Int Immunol. 2007;19:401–9.  https://doi.org/10.1093/intimm/dxm005.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Sako N, Schiavon V, Bounfour T, Dessirier V, Ortonne N, Olive D, et al. Membrane expression of NK receptors CD160 and CD158k contributes to delineate a unique CD4+ T-lymphocyte subset in normal and mycosis fungoides skin. Cytometry A. 2014;85:869–82.  https://doi.org/10.1002/cyto.a.22512.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Sedy JR, Bjordahl RL, Bekiaris V, Macauley MG, Ware BC, Norris PS, et al. CD160 activation by herpesvirus entry mediator augments inflammatory cytokine production and cytolytic function by NK cells. J Immunol. 2013;191:828–36.  https://doi.org/10.4049/jimmunol.1300894.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Tu TC, Brown NK, Kim TJ, Wroblewska J, Yang X, Guo X, et al. CD160 is essential for NK-mediated IFN-gamma production. J Exp Med. 2015;212:415–29.  https://doi.org/10.1084/jem.20131601.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E, et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med. 1998;187:2065–72.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Vivier E, Nunes JA, Vely F. Natural killer cell signaling pathways. Science. 2004;306:1517–9.  https://doi.org/10.1126/science.1103478.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Welte S, Kuttruff S, Waldhauer I, Steinle A. Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction. Nat Immunol. 2006;7:1334–42.  https://doi.org/10.1038/ni1402.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.INSERM U976Saint Louis HospitalParisFrance