Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Glutamate Receptor

  • Elek Molnár
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_304

Synonyms

Nomenclature of Glutamate Receptor Proteins

International Union of Basic and Clinical Pharmacology (IUPHAR) recommended and previous nomenclatures of glutamate receptor proteins
  1. 1.
    Ionotropic glutamate receptors (Traynelis et al. 2010)
    • AMPA receptor subunits GluA1–4 (previously: GluR1–4; GluRA-D; GLUA1-4)

    • Kainate receptor subunits GluK1–5 (previously: GluR5–7, KA-1/2; EAA3–5, EAA1/2; GLUK5-7, GLUK1/2)

    • NMDA receptor subunits GluN1, GluN2A-D, GluN3A-B (previously: NR1, NR2A-D, NR3A/B; GLUN1, GLUN2A-D, GLUN3A/B)

    • δ receptor subunits GluD1–2 (previously: GluRδ1/2)

     
  2. 2.
    Metabotropic glutamate receptors (Niswender and Conn 2010)
    • mGlu1–8 (previously: mGluR1–8)

     

Historical Background

The excitatory neurotransmitter role of L-glutamate gradually emerged in the 1950s–1960s. Early studies indicated that L-glutamate: (1) was present in high concentrations throughout the mammalian central...

This is a preview of subscription content, log in to check access.

References

  1. Collingridge GL, Volianskis A, Bannister N, France G, Hanna L, Mercier M, Tidball P, Fang G, Irvine MW, Costa BM, Monaghan DT, Bortolotto ZA, Molnár E, Lodge D, Jane DE. The NMDA receptor as a target for cognitive enhancement. Neuropharmacology. 2013;64:13–26.PubMedCrossRefGoogle Scholar
  2. Copits BA, Swanson GT. Dancing partners at the synapse: auxiliary subunits that shape kainate receptor function. Nat Rev Neurosci. 2012;13:657–86.CrossRefGoogle Scholar
  3. Diering GH, Heo S, Hussain NK, Liu B, Huganir RL. Extensive phosphorylation of AMPA receptors in neurons. Proc Nat Acad Sci USA. 2016;113:E4920–7.CrossRefGoogle Scholar
  4. Du J, Li X-H, Li Y-J. Glutamate in peripheral organs: biology and pharmacology. Eur J Pharmacol. 2016;784:42–8.PubMedCrossRefGoogle Scholar
  5. Elegheert J, Kakegawa W, Clay JE, Shanks NF, Behiels E, Matsuda K, Kohda K, Miura E, Rossmann M, Mitakidis N, Motohashi J, Chang VT, Siebold C, Greger IH, Nakagawa T, Yuzaki M, Aricescu AR. Structural basis for integration of GluD receptors within synaptic organizer complexes. Science. 2016;353:295–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Galaz P, Barra R, Figueroa H, Mariqueo T. Advances in the pharmacology of IGIGs auxiliary subunits. Pharmacol Res. 2015;101:65–73.PubMedCrossRefGoogle Scholar
  7. Gladding CM, Fitzjohn SM, Molnár E. Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms. Pharmacol Rev. 2009;61:395–412.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Golubeva AV, Moloney RD, O’Connor RM, Dinan TG, Cryan JF. Metabotropic glutamate receptors in central nervous system disorders. Curr Drug Targets. 2015;16:1–80.Google Scholar
  9. Gray JA, Zito K, Hell JW. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity. F1000Research. 2016;5(F1000 Faculty Rev):1010.Google Scholar
  10. Haering SC, Tapken D, Pahl S, Hollmann M. Auxiliary subunits: shepherding AMPA receptors to the plasma membrane. Membranes. 2014;4:469–90.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Henley JM, Wilkinson KA. Synaptic AMPA receptor composition in development, plasticity and disease. Nat Rev Neurosci. 2016;17:337–50.PubMedCrossRefGoogle Scholar
  12. Herguedas B, García-Nafría J, Cais O, Fernández-Leiro R, Krieger J, Ho H, Greger IH. Structure and organization of heteromeric AMPA-type glutamate receptors. Science. 2016;352:549.CrossRefGoogle Scholar
  13. Herguedas B, Krieger J, Greger IH. Receptor heteromeric assembly – how it works and why it matters: the case of ionotropic glutamate receptors. Prog Mol Biol Transl Sci. 2013;117:361–86.PubMedCrossRefGoogle Scholar
  14. Howe JR. Modulation of non-NMDA receptor gating by auxiliary subunits. J Physiol. 2015;593:61–72.PubMedCrossRefGoogle Scholar
  15. Huganir RL, Nicoll RA. AMPARs and synaptic plasticity: the last 25 years. Neuron. 2013;80:704–17.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Kumar J, Mayer ML. Functional insights from glutamate receptor ion channel structures. Annu Rev Physiol. 2013;75:313–37.PubMedCrossRefGoogle Scholar
  17. Lerma J, Marques JM. Kainate receptors in health and disease. Neuron. 2013;80:292–311.PubMedCrossRefGoogle Scholar
  18. Levite M. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren’s syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor’s expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy. J Neural Transm. 2014;121:1029–75.PubMedCrossRefGoogle Scholar
  19. Lewerenz J, Maher P. Chronic glutamate toxicity in neurodegenerative diseases – what is the evidence? Front Neurosci. 2015;9:469.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Lodge D. The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology. 2009;56:6–21.PubMedCrossRefGoogle Scholar
  21. Miladinovic T, Nashed MG, Singh G. Overview of glutamatergic dysregulation in central pathologies. Biomolecules. 2015;5:3112–41.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Molnár E. Molecular organization and regulation of glutamate receptors in developing and adult mammalian central nervous systems. In: Lajtha A, Vizi ES, editors. Handbook of neurochemistry and molecular neurobiology: neurotransmitter systems. 3rd ed. New York: Springer; 2008. p. 415–41.CrossRefGoogle Scholar
  23. Morris RGM. NMDA receptors and memory encoding. Neuropharmacology. 2013;74:32–40.PubMedCrossRefGoogle Scholar
  24. Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology. 2011;60:1017–41.PubMedCrossRefGoogle Scholar
  25. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010;50:295–322.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor proteins, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14:383–400.PubMedCrossRefGoogle Scholar
  27. Rondard P, Pin J-P. Dynamics and modulation of metabotropic glutamate receptors. Curr Opin Pharmacol. 2015;20:95–101.PubMedCrossRefGoogle Scholar
  28. Sanz-Clemente A, Nicoll RA, Roche KW. Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist. 2013;19:62–75.PubMedCrossRefGoogle Scholar
  29. Sobolevsky AI, Rosconi MP, Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature. 2009;462:745–56.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62:405–96.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centre for Synaptic Plasticity, School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK