Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Mark T. HandleyEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_298


Historical Background

RAB proteins are members of the RAS superfamily of small GTPases, with which they share sequence and structural homology. RAS isoforms were first identified in cancer-causing viruses and subsequently as oncogenes, prompting substantial interest. Subfamilies of the RAS GTPases include the RAB, RHO, ARF, RAP, and RAN proteins of which RABs are the largest group (Takai et al. 2001). Early work in yeast identified essential roles for the RABs Ypt1p and Sec4p in pre- and post-Golgi membrane trafficking (Salminen and Novick 1987; Segev et al. 1988). Efforts to clone other members of the RAB gene family quickly established that this family had undergone significant expansion in higher eukaryotes. As each new RAB was discovered, it also became clear that different RAB proteins could adopt specific subcellular localizations, associating with particular membrane...

This is a preview of subscription content, log in to check access.


  1. Aligianis IA, Johnson CA, Gissen P, Chen D, Hampshire D, Hoffmann K, et al. Mutations of the catalytic subunit of RAB3GAP cause Warburg micro syndrome. Nat Genet. 2005;37:221–3. doi:10.1038/ng1517.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barr FA. Review series: Rab GTPases and membrane identity: causal or inconsequential? J Cell Biol. 2013;202:191–9. doi:10.1083/jcb.201306010.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bem D, Yoshimura S, Nunes-Bastos R, Bond FC, Kurian MA, Rahman F, et al. Loss-of-function mutations in RAB18 cause Warburg micro syndrome. Am J Hum Genet. 2011;88:499–507. doi:10.1016/j.ajhg.2011.03.012.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Borck G, Wunram H, Steiert A, Volk AE, Korber F, Roters S, et al. A homozygous RAB3GAP2 mutation causes Warburg micro syndrome. Hum Genet. 2011;129:45–50. doi:10.1007/s00439-010-0896-2.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Carpanini SM, McKie L, Thomson D, Wright AK, Gordon SL, Roche SL, et al. A novel mouse model of Warburg Micro syndrome reveals roles for RAB18 in eye development and organisation of the neuronal cytoskeleton. Dis Model Mech. 2014;7:711–22. doi:10.1242/dmm.015222.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chavrier P, Simons K, Zerial M. The complexity of the Rab and Rho GTP-binding protein subfamilies revealed by a PCR cloning approach. Gene. 1992;112:261–4.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cheng CY, Wu JC, Tsai JW, Nian FS, Wu PC, Kao LS, et al. ENU mutagenesis identifies mice modeling Warburg Micro Syndrome with sensory axon degeneration caused by a deletion in Rab18. Exp Neurol. 2015;267:143–51. doi:10.1016/j.expneurol.2015.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cho NJ, Lee C, Pang PS, Pham EA, Fram B, Nguyen K, et al. Phosphatidylinositol 4,5-bisphosphate is an HCV NS5A ligand and mediates replication of the viral genome. Gastroenterology. 2015;148:616–25. doi:10.1053/j.gastro.2014.11.043.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dejgaard SY, Murshid A, Erman A, Kizilay O, Verbich D, Lodge R, et al. Rab18 and Rab43 have key roles in ER-Golgi trafficking. J Cell Sci. 2008;121:2768–81. doi:10.1242/jcs.021808.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dopie J, Rajakyla EK, Joensuu MS, Huet G, Ferrantelli E, Xie T, et al. Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators. J Cell Sci. 2015;128:2388–400. doi:10.1242/jcs.169441.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Eastman SW, Yassaee M, Bieniasz PD. A role for ubiquitin ligases and Spartin/SPG20 in lipid droplet turnover. J Cell Biol. 2009;184:881–94. doi:10.1083/jcb.200808041.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fukui K, Sasaki T, Imazumi K, Matsuura Y, Nakanishi H, Takai Y. Isolation and characterization of a GTPase activating protein specific for the Rab3 subfamily of small G proteins. J Biol Chem. 1997;272:4655–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gerondopoulos A, Bastos RN, Yoshimura S, Anderson R, Carpanini S, Aligianis I, et al. Rab18 and a Rab18 GEF complex are required for normal ER structure. J Cell Biol. 2014;205:707–20. doi:10.1083/jcb.201403026.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gillingham AK, Sinka R, Torres IL, Lilley KS, Munro S. Toward a comprehensive map of the effectors of rab GTPases. Dev Cell. 2014;31:358–73. doi:10.1016/j.devcel.2014.10.007.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Handley MT, Morris-Rosendahl DJ, Brown S, Macdonald F, Hardy C, Bem D, et al. Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in Warburg micro syndrome and Martsolf syndrome. Hum Mutat. 2013;34:686–96. doi:10.1002/humu.22296.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Handley MT, Carpanini SM, Mali GR, Sidjanin DJ, Aligianis IA, Jackson IJ, et al. Warburg Micro syndrome is caused by RAB18 deficiency or dysregulation. Open Biol. 2015;5:150047. doi:10.1098/rsob.150047.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Klopper TH, Kienle N, Fasshauer D, Munro S. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol. 2012;10:71. doi:10.1186/1741-7007-10-71.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Leung KF, Baron R, Ali BR, Magee AI, Seabra MC. Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation. J Biol Chem. 2007;282:1487–97. doi:10.1074/jbc.M605557200.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Liegel RP, Handley MT, Ronchetti A, Brown S, Langemeyer L, Linford A, et al. Loss-of-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg micro syndrome in humans. Am J Hum Genet. 2013;93:1001–14. doi:10.1016/j.ajhg.2013.10.011.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Liu J, Zhang J, Li Y, Wang L, Sui B, Dai D. MiR-455-5p acts as a novel tumor suppressor in gastric cancer by down-regulating RAB18. Gene. 2016. doi:10.1016/j.gene.2016.07.034.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG. Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem. 2005;280:42325–35. doi:10.1074/jbc.M506651200.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mhlanga-Mutangadura T, Johnson GS, Ashwini A, Shelton GD, Wennogle SA, Johnson GC, et al. A Homozygous RAB3GAP1:c.743delC mutation in Rottweilers with neuronal vacuolation and spinocerebellar degeneration. J Vet Int Med. 2016a;30:813–8. doi:10.1111/jvim.13921.CrossRefGoogle Scholar
  23. Mhlanga-Mutangadura T, Johnson GS, Schnabel RD, Taylor JF, Johnson GC, Katz ML, et al. A mutation in the Warburg syndrome gene, RAB3GAP1, causes a similar syndrome with polyneuropathy and neuronal vacuolation in Black Russian Terrier dogs. Neurobiol Dis. 2016b;86:75–85. doi:10.1016/j.nbd.2015.11.016.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Muller M, Pym EC, Tong A, Davis GW. Rab3-GAP controls the progression of synaptic homeostasis at a late stage of vesicle release. Neuron. 2011;69:749–62. doi:10.1016/j.neuron.2011.01.025.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nachmias D, Sklan EH, Ehrlich M, Bacharach E. Human immunodeficiency virus type 1 envelope proteins traffic toward virion assembly sites via a TBC1D20/Rab1-regulated pathway. Retrovirology. 2012;9:7. doi:10.1186/1742-4690-9-7.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nagano F, Sasaki T, Fukui K, Asakura T, Imazumi K, Takai Y. Molecular cloning and characterization of the noncatalytic subunit of the Rab3 subfamily-specific GTPase-activating protein. J Biol Chem. 1998;273:24781–5.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci. 2005;118:2601–11. doi:10.1242/jcs.02401.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 2004;44:595–600. doi:10.1016/j.neuron.2004.10.023.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Patel H, Cross H, Proukakis C, Hershberger R, Bork P, Ciccarelli FD, et al. SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nat Genet. 2002;31:347–8. doi:10.1038/ng937.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pulido MR, Diaz-Ruiz A, Jimenez-Gomez Y, Garcia-Navarro S, Gracia-Navarro F, Tinahones F, et al. Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One. 2011;6:e22931. doi:10.1371/journal.pone.0022931.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sakane A, Manabe S, Ishizaki H, Tanaka-Okamoto M, Kiyokage E, Toida K, et al. Rab3 GTPase-activating protein regulates synaptic transmission and plasticity through the inactivation of Rab3. Proc Natl Acad Sci U S A. 2006;103:10029–34. doi:10.1073/pnas.0600304103.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Salloum S, Wang H, Ferguson C, Parton RG, Tai AW. Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS Pathog. 2013;9:e1003513. doi:10.1371/journal.ppat.1003513.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Salminen A, Novick PJ. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell. 1987;49:527–38.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Schafer U, Seibold S, Schneider A, Neugebauer E. Isolation and characterisation of the human rab18 gene after stimulation of endothelial cells with histamine. FEBS Lett. 2000;466:148–54.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Segev N, Mulholland J, Botstein D. The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell. 1988;52:915–24.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Sidjanin DJ, Park AK, Ronchetti A, Martins J, Jackson WT. TBC1D20 mediates autophagy as a key regulator of autophagosome maturation. Autophagy. 2016:1–17. doi:10.1080/15548627.2016.1199300.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Spang N, Feldmann A, Huesmann H, Bekbulat F, Schmitt V, Hiebel C, et al. RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy. Autophagy. 2014;10:2297–309. doi:10.4161/15548627.2014.994359.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, et al. Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. eLife. 2016;5. doi:10.7554/eLife.12813.Google Scholar
  39. Tagaya M, Arasaki K, Inoue H, Kimura H. Moonlighting functions of the NRZ (mammalian Dsl1) complex. Front Cell Dev Biol. 2014;2:25. doi:10.3389/fcell.2014.00025.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev. 2001;81:153–208.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Tang WC, Lin RJ, Liao CL, Lin YL. Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication. J Virol. 2014;88:6793–804. doi:10.1128/JVI.00045-14.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Vazquez-Martinez R, Cruz-Garcia D, Duran-Prado M, Peinado JR, Castano JP, Malagon MM. Rab18 inhibits secretory activity in neuroendocrine cells by interacting with secretory granules. Traffic. 2007;8:867–82. doi:10.1111/j.1600-0854.2007.00570.x.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Vazquez-Martinez R, Martinez-Fuentes AJ, Pulido MR, Jimenez-Reina L, Quintero A, Leal-Cerro A, et al. Rab18 is reduced in pituitary tumors causing acromegaly and its overexpression reverts growth hormone hypersecretion. J Clin Endocrinol Metab. 2008;93:2269–76. doi:10.1210/jc.2007-1893.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wiedmer M, Oevermann A, Borer-Germann SE, Gorgas D, Shelton GD, Drogemuller M, et al. A RAB3GAP1 SINE insertion in Alaskan huskies with polyneuropathy, ocular abnormalities, and neuronal vacuolation (POANV) resembling human warburg micro syndrome 1 (WARBM1). G3. 2016;6:255–62. doi:10.1534/g3.115.022707.CrossRefGoogle Scholar
  45. Wu Q, Sun X, Yue W, Lu T, Ruan Y, Chen T, et al. RAB18, a protein associated with Warburg Micro syndrome, controls neuronal migration in the developing cerebral cortex. Mol Brain. 2016;9:19. doi:10.1186/s13041-016-0198-2.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yu H, Leaf DS, Moore HP. Gene cloning and characterization of a GTP-binding Rab protein from mouse pituitary AtT-20 cells. Gene. 1993;132:273–8.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Zenner HL, Yoshimura S, Barr FA, Crump CM. Analysis of Rab GTPase-activating proteins indicates that Rab1a/b and Rab43 are important for herpes simplex virus 1 secondary envelopment. J Virol. 2011;85:8012–21. doi:10.1128/JVI.00500-11.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhong K, Chen K, Han L, Li B. MicroRNA-30b/c inhibits non-small cell lung cancer cell proliferation by targeting Rab18. BMC Cancer. 2014;14:703. doi:10.1186/1471-2407-14-703.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Section of Genetics, Leeds Institute of Biomedical and Clinical SciencesUniversity of LeedsLeedsUK