Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Leonard RabinowEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_277


Historical Background

CLK1 (cdc2-like) kinase was initially described in mammalian systems (mouse and human cells), and was so-named because of amino-acid sequences similar to cdc2 kinase (now cdk1) in specific kinase catalytic subdomains (Stodjl and Bell 1999 and references therein). CLK1 was also referred to as STY, since it was the first kinase which autophosphorylated with dual-specificity, i.e., on Ser/Thr and Tyr (S/T and Y in the single-letter amino-acid code). Subsequent studies identified four CLK kinases in vertebrate genomes, CLK1-4. The cloning and characterization of the Drosophila orthologue, DOA, enabled the recognition of family members in many additional species, including Arabidopsis thaliana (AFC1-3), Nicotiana tabacum (PK12), Schizosaccharomyces pombe (Lkh1), and Saccharomyces cerevisiae (KNS1) (Yun et al. 1994; Savaldi-Goldstein et al. 2003; Kang et al. 2010and references therein). These were collectively...

This is a preview of subscription content, log in to check access.



I apologize to the colleagues working on the LAMMER protein kinases whose excellent work could not be completely described or cited due to severe limitations on space and the number of references allowed. Wherever possible I have cited the most recent reference from each group to allow readers to identify prior citations of interest. Work in the laboratory of LR is supported by the University of Paris Sud and the CNRS.


  1. Bard F, Casano L, Bard F, Mallabiabarrena A, Wallace E, Saito K, Kitayama H, Guizzunti G, Hu Y, Wendler F, Dasgupta R, Perrimon N, Malhotra V. Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature. 2006;439(7076):604–7.PubMedCrossRefGoogle Scholar
  2. Bender J, Fink GR. AFC1, a LAMMER kinase from Arabidopsis thaliana, activates STE12-dependent processes in yeast. Proc Natl Acad Sci USA. 1994;91:12105–9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bettencourt-Dias M, Giet R, Sinka R, Mazumdar A, Lock WG, Balloux F, Zafiropoulos PJ, Yamaguchi S, Winter S, Carthew RW, Cooper M, Jones D, Frenz L, Glover DM. Genome-wide survey of protein kinases required for cell cycle progression. Nature. 2004;432(7020):980–7.PubMedCrossRefGoogle Scholar
  4. Björklund M, Taipale M, Varjosalo M, Saharinen J, Lahdenperä J, Taipale J. Nature. 2006;439:1009.PubMedCrossRefGoogle Scholar
  5. Bullock AN, Das S, Debreczeni JE, Rellos P, Fedorov O, Niesen FH, et al. Kinase domain insertions define distinct roles of CLK kinases in SR protein phosphorylation. Structure. 2009;17(3):352–62.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Colwill K, Feng LL, Yeakley JM, Gish GD, Caceres JF, Pawson T, Fu XD. SRPK1 and Clk/STY protein kinases show distinct substrate specificities for Serine/Arginine-rich splicing factors. J Biol Chem. 1996a;271:24569–75.PubMedCrossRefGoogle Scholar
  7. Colwill K, Pawson T, Andrews B, Prasad J, Manley JL, Bell JC, Duncan PI. The Clk/STY protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J. 1996b;15:265–75.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Du C, McGuffin ME, Dauwalder B, Rabinow L, Mattox W. Protein phosphorylation plays an essential role in the regulation of alternative splicing and sex determination in Drosophila. Mol Cell. 1998;2:741–50.PubMedCrossRefGoogle Scholar
  9. Edwards AC, Rollmann SM, Morgan TJ, Mackay TF. Quantitative genomics of aggressive behavior in Drosophila melanogaster. PLoS Genet. 2006;2:e154.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Fan Y, Schlierf M, Cuervo-Gaspar A, Dreux C, Kpebe A, Chaney L, Mathieu A, Hitte C, Gremy O, Sarot E, Horn M, Zhao Y, Kinzy TG, Rabinow L. Drosophila Translational Elongation Factor-1γ is Modified in Response to DOA Kinase Activity and is Essential For Cellular Viability. Genetics. 2010;184:141–54.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Garcia-Sacristan A, Fernandez-Nestosa MJ, Hernandez P, Schvartzman JB, Krimer DB. Protein kinase clk/STY is differentially regulated during erythroleukemia cell differentiation: a bias toward the skipped splice variant characterizes postcommitment stages. Cell Res. 2005;15(7):495–503.PubMedCrossRefGoogle Scholar
  12. Giamas G, Hirner H, Shoshiashvili L, Grothey A, Gessert S, Kühl M, Henne-Bruns D, Vorgias CE, Knippschild U. Phosphorylation of CK1δ: identification of Ser370 as the major phosphorylation site targeted by PKA in vitro and in vivo. Biochem J. 2007;406(3):389–98.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gorski SM, Chittaranjan S, Chittaranjan S, Pleasance ED, Freeman JD, Anderson CL, Varhol RJ, Coughlin SM, Zuyderduyn SD, Jones SJ, Marra MA. A SAGE Approach to Discovery of Genes Involved in Autophagic Cell Death. Curr Biol. 2003;13:358–63.PubMedCrossRefGoogle Scholar
  14. Hartman H, Federov A. The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA. 2002;99:1420–5.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Hillman RT, Green RE, Brenner SE. An unappreciated role for RNA surveillance. Genome Biol. 2004;5(2):R8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Jiang K, Patel NA, Watson JE, Apostolatos H, Kleiman E, Hanson O, Hagiwara M, Cooper DR. Akt2 regulation of Cdc2-like kinases (Clk/Sty), serine/arginine-rich (SR) protein phosphorylation, and insulin-induced alternative splicing of PKCbetaII messenger ribonucleic acid. Endocrinology. 2009;150(5):2087–97.PubMedCrossRefGoogle Scholar
  17. Kang WH, Park YD, Hwang JS, Park HM. RNA-binding protein Csx1 is phosphorylated by LAMMER kinase, Lkh1, in reponse to oxidative stress in Schizosaccharomyces pombe. FEBS Lett. 2007;581:3473.PubMedCrossRefGoogle Scholar
  18. Kang WH, Park YH, Park HM. The LAMMER kinase homolog, Lkh1, regulates Tup transcriptional repressors through phosphorylation in Schizosaccharomyces pombe. J Biol Chem. 2010;285(18):13797–806.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Katsu R, Onogi H, Wada K, Kawaguchi Y, Hagiwara M. Novel SR-rich-related Protein Clasp Specifically Interacts with Inactivated Clk4 and Induces the Exon EB Inclusion of Clk. J Biol Chem. 2002;277(46):44220–8.PubMedCrossRefGoogle Scholar
  20. Kojima T, Zama T, Wada K, Onogi H, Hagiwara M. Cloning of human PRP4 reveals interaction with Clk1. J Biol Chem. 2001;276(34):32247–56.PubMedCrossRefGoogle Scholar
  21. Kpebe A, Rabinow L. Dissection of DOA kinase isoform functions in Drosophila. Genetics. 2008;179:1973–87.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Lee K, Du C, Horn M, Rabinow L. Activity and autophosphorylation of LAMMER protein kinases. J Biol Chem. 1996;271:27299–303.PubMedCrossRefGoogle Scholar
  23. Lee CY, Clough EA, Yellon P, Teslovich TM, Stephan DA. Baehrecke EH. Curr Biol. 2003;13:350.PubMedCrossRefGoogle Scholar
  24. Menegay H, Moeslein F, Landreth G. The dual specificity protein kinase CLK3 is abundantly expressed in mature mouse spermatozoa. Exp Cell Res. 1999;253:463–73.PubMedCrossRefGoogle Scholar
  25. Menegay HJ, Myers MP, Moeslein FM, Landreth GE. Biochemical characterization and localization of the dual specificity kinase CLK1. J Cell Sci. 2000;113:3241–53.PubMedPubMedCentralGoogle Scholar
  26. Moeslein FM, Myers MP, Landreth GE. The CLK family kinases CLK1 and CLK2 phosphoryate and activate the tyrosine phosphatase PTP-1B. J Biol Chem. 1999;274:26697–704.PubMedCrossRefGoogle Scholar
  27. Morris JZ, Navarro C, Lehmann R. Identification and analysis of mutations in bob, Doa and eight new genes required for oocyte specification and development in Drosophila melanogaster. Genetics. 2003;164(4):1435–46.PubMedPubMedCentralGoogle Scholar
  28. Mott BT, Tanega C, Shen M, Maloney DJ, Shinn P, Leister W, Marugan JJ, Inglese J, Austin CP, Misteli T, Auld DS, Thomas CJ. Evaluation of substituted 6-arylquinazolin-4-amines as potent and selective inhibitors of cdc2-like kinases (Clk). Bioorg Med Chem Lett. 2009;19(23):6700–5.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Muraki M, Ohkawara B, Hosoya T, Onogi H, Koizumi J, Koizumi T, Sumi K, Yomoda J, Murray MV, Kimura H, Furuichi K, Shibuya H, Krainer AR, Suzuki M, Hagiwara M. Manipulation of alternative splicing by a newly developed inhibitor of Clks. J Biol Chem. 2004;279(23):24246–54.PubMedCrossRefGoogle Scholar
  30. Murata S, Yoshiara T, Lim CR, Sugino M, Kogure M, Ohnuki T, et al. Psychophysiological stress-regulated gene expression in mice. FEBS Lett. 2005;579(10):2137–42.PubMedCrossRefGoogle Scholar
  31. Nam SY, Seo HH, Park HS, An S, Kim JY, Yang KH, Kim CS, Jeong M, Jin YW. Phosphorylation of CLK2 at serine 34 and threonine 127 by AKT controls cell survival after ionizing radiation. J Biol Chem. 2010;285(41):31157–63.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Nayler O, Stamm S, Ullrich A. Characterization and comparison of four serine- and arginine-rich (SR) protein kinases. Biochem J. 1997;326:693–700.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Nayler O, Schnorrer F, Stamm S, Ullrich A. The cellular localization of the murine Serine/Arginine-rich protein kinase CLK2 is regulated by Serine 141 autophosphorylation. J Biol Chem. 1998;273:34341–8.PubMedCrossRefGoogle Scholar
  34. Nihira K, Taira N, Miki Y, Yoshida K. TTK/Mps1 controls nuclear targeting of c-Abl by 14–3–3-coupled phosphorylation in response to oxidative stress. Oncogene. 2008;27:7285–95.PubMedCrossRefGoogle Scholar
  35. Nikolakaki E, Du C, Lai J, Cantley L, Giannakouros T, Rabinow L. Phosphorylation by LAMMER protein kinases: determination of a consensus site, identification of in vitro substrates and implications for substrate preferences. Biochemistry. 2002;41:2055–66.PubMedCrossRefGoogle Scholar
  36. Padmanabha R, Gehrung S, Snyder M. The KNS1 gene of Saccharomyces cerevisiae encodes a nonessential protein kinase homologue that is distantly related to members of the CDC28/cdc2 gene family. Mol Gen Genet. 1991;229:1–9.PubMedCrossRefGoogle Scholar
  37. Park JW, Parisky K, Celotto AM, Reenan RA, Graveley BR. Identification of alternative splicing regulators by RNA interference in Drosophila. Proc Natl Acad Sci USA. 2004;101:15974–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Prasad J, Manley JL. Regulation and substrate specificity of the SR protein kinase Clk/Sty. Mol Cell Biol. 2003;23:4139–49.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Rabinow L, Birchler JAA. Dosage-sensitive modifier of retrotransposon- induced alleles of the Drosophila white locus. EMBO J. 1989;8:879–89.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Rabinow L, Samson ML. The role of the Drosophila LAMMER protein kinase DOA in somatic sex determination. J Genet. 2010;89(3):271–7.PubMedCrossRefGoogle Scholar
  41. Rabinow L, Chiang SL, Birchler JA. Mutations at the Darkener of apricot locus modulate transcript levels of copia and copia-induced mutations in Drosophila melanogaster. Genetics. 1993;134:1175–85.PubMedPubMedCentralGoogle Scholar
  42. Rodgers JT, Haas W, Gygi SP, Puigserver P. Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis. Cell Metab. 2010;11(1):23–34.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Savaldi-Goldstein S, Aviv D, Davydov O, Fluhr R. Alternative splicing modulation by a LAMMER kinase impinges on developmental and transcriptome expression. Plant Cell. 2003;15(4):926–38.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Sessa G, Raz V, Savaldi S, Fluhr R. PK12, a plant dual-specificity protein kinase of the LAMMER family, is regulated by the hormone ethylene. Plant Cell. 1996;8:2223–34.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Stodjl DF, Bell JC. SR protein kinases: the splice of life. Biochem Cell Biol. 1999;77:293–8.CrossRefGoogle Scholar
  46. Velazquez-Dones A, Hagopian JC, Ma CT, Zhong XY, Zhou H, Ghosh G, XD F, Adams JA. Mass spectrometric and kinetic analysis of ASF/SF2 phosphorylation by SRPK1 and Clk/Sty. J Biol Chem. 2005;280(50):41761–8.PubMedCrossRefGoogle Scholar
  47. Yamamoto A, Zwarts L, Callaerts P, Norga K, Mackay TF, Anholt RR. Neurogenetic networks for startle-induced locomotion in Drosophila melanogaster. Proc Natl Acad Sci USA. 2008;105(34):12393–8.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Younis I, Berg M, Kaida D, Dittmar K, Wang C, Dreyfuss G. Rapid-response splicing reporter screens identify differential regulators of constitutive and alternative splicing. Mol Cell Biol. 2010;30(7):1718–28.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Yun B, Farkas R, Lee K, Rabinow L. The Doa locus encodes a member of a new protein kinase family, and is essential for eye and embryonic development in Drosophila melanogaster. Genes Dev. 1994;8:1160–73.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Université Paris Sud, CNRS UMR 8195OrsayFrance