Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Kimberly J. Perry
  • Jonathan J. HenryEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_275


Historical Background

G-protein-coupled receptors constitute the largest and most diverse family of integral membrane proteins and are involved in a wide variety of physiological functions. Some of these functions include mediating responses to hormones, neurotransmitters, odorants and light, and regulation of the immune system and inflammation (Yousefi et al. 2001; Lattin et al. 2008; Weis and Kobilka 2008; Gloriam et al. 2009). GPR84 belongs to the rhodopsin subfamily of G-protein-coupled receptors and was first discovered during a comprehensive search of available expressed sequence tags (EST; Wittenberger et al. 2001). Since its discovery, GPR84 has been found in many human tissues, in mouse spleen, liver, spinal cord and sciatic nerve, in embryonic Xenopus laevistissues, and zebrafish intestine, heart, and liver. This receptor was considered an orphan receptor until late 2006, when it was discovered that GPR84 functions as a...

This is a preview of subscription content, log in to check access.


  1. Adams DH, Lloyd AR. Chemokines: leukocyte recruitment and activation cytokines. Lancet. 1997;349:490–5.PubMedCrossRefGoogle Scholar
  2. Bouchard C, Pagé J, Bédard A, Tremblay P, Valliéres L. G protein-coupled receptor 84, a microglia-associated protein expressed in neuroinflammatory conditions. Glia. 2007;55:790–800.PubMedCrossRefGoogle Scholar
  3. Casarosa S, Amato MA, Andeazzoli M, Gestri G, Barsacchi G, Cremisi F. Xrx1 control proliferation and multipotency of retinal progenitors. Mol Cell Neurosci. 2003;22:25–36.PubMedCrossRefGoogle Scholar
  4. Dietrich PA, Yang C, Leung HHL, Lynch JR, Gonzales E, Liu B, Haber M, Norris MD, Wang JL, Wang JY. GPR84 sustains aberrant beta-catenin signaling in leukemic stem cells for maintenance of MLL leukemogenesis. Blood. 2014;124(22):3284–94.PubMedCrossRefGoogle Scholar
  5. Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups and fingerprints. Mol Pharmacol. 2003;63:1256–72.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Gloriam DE, Foord SM, Blaney FE, Garland SL. Definition of the G protein-coupled receptor transmembrane bundle binding pocket and calculation of receptor similarities for drug design. J Med Chem. 2009;52:4429–42.PubMedCrossRefGoogle Scholar
  7. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Pillars article: development of TH1 CD4+ T cells through IL-12 produced by listeria-induced macrophages. Science. 1993;260:547–9.PubMedCrossRefGoogle Scholar
  8. Kopf M, Baumann H, Freer G, Freudenberg M, Lamers M, Kishimoto T, Zinkernagel R, Bluethmann H, Köhler G. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature. 1994;368:339–42.PubMedCrossRefGoogle Scholar
  9. Lattin JE, Schroder K, Su AI, Walker JR, Zhang J, Wiltshire T, Saijo K, Glass CK, Hume DA, Kellie S, Sweet MJ. Expression analysis of G protein-coupled receptors in mouse macrophages. Immunome Res. 2008;4:5.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Liu Y, Zhang Q, Chen LH, Yang H, Lu W, Xie X, Nan FJ. Design and synthesis of 2-Alkylpyrimidine-4,6-diol and 6-Alkylpyridine-2,4-diol as potent GPR84 agonists. ACS Med Chem Lett. 2016;7:579–83.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Lynch JR, Wang JY. G Protein-coupled receptor signaling in stem cells and cancer. Int J Mol Sci. 2016;17:707.PubMedCentralCrossRefGoogle Scholar
  12. Nagasaki H, Kondo T, Fuchigami M, Hashimoto H, Sugimura Y, Ozaki N, Arima H, Ota A, Oiso Y, Hamada Y. Inflammatory changes in adipose tissue enhance expression of GPR84, a medium-chain fatty acid receptor: TNFα enhances GPR84 expression in adipocytes. FEBS Lett. 2012;586:368–72.PubMedCrossRefGoogle Scholar
  13. Ohnuma S, Hopper S, Wang KC, Philpott A, Harris WA. Coordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the Xenopus retina. Development. 2002;129:2435–46.PubMedGoogle Scholar
  14. Perry KJ, Johnson VR, Malloch EL, Fukui L, Wever J, Thomas AG, Hamilton PW, Henry JJ. The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis. Dev Dyn. 2010;239:3024–37.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004;10:55–63.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Scott P. IL-12: initiation cytokine for cell-mediated immunity. Science. 1993;260:496–7.PubMedCrossRefGoogle Scholar
  17. Suzuki M, Takaishi S, Nagasaki M, Onozawa Y, Iino I, Maeda H, Komai T, Oda T. Medium-chain fatty acid-sensing receptor, GPR84, is a proinflammatory receptor. J Biol Chem. 2013;288:10684–91.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Takeda S, Yamamoto A, Okada T, Matsumura E, Nose E, Kogure K, Kojima S, Haga T. Identification of surrogate ligands for orphan G protein-coupled receptors. Life Sci. 2003;74:367–77.PubMedCrossRefGoogle Scholar
  19. Venkataraman C, Kuo F. The G-protein coupled receptor, GPR84 regulates IL-4 production by T lymphocytes in response to CD3 crosslinking. Immunol Lett. 2005;101:144–53.PubMedCrossRefGoogle Scholar
  20. Wang J, Wu X, Simonavicius N, Tian H, Ling L. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem. 2006;281:34457–64.PubMedCrossRefGoogle Scholar
  21. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI, Armstrong SA. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010;327:1650–3.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Weis WI, Kobilka BK. Structural insights into G-protein-coupled receptor activation. Curr Opin Struct Biol. 2008;18:734–40.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Wittenberger T, Schaller HC, Hellebrand S. An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors. J Mol Biol. 2001;307:799–813.PubMedCrossRefGoogle Scholar
  24. Yeung J, Esposito MT, Gandillet A, Zeisig BB, Griessinger E, Bonnet D, So CW. β-catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell. 2010;18:606–18.PubMedCrossRefGoogle Scholar
  25. Yousefi S, Cooper PR, Potter SL, Mueck B, Jarai G. Cloning and expression analysis of a novel G-protein-coupled receptor selectively expressed on granulocytes. J Leukoc Biol. 2001;69:1045–52.PubMedGoogle Scholar
  26. Zhang Q, Yang H, Li J, Xie X. Discovery and characterization of a novel small molecule agonist for medium-chain free fatty acid receptor GPR84. J Pharmacol Exp Ther. 2016.  https://doi.org/10.1124/jpet.115.232033.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Cell and Developmental BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA