Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Jie Zhang
  • Zhi-wei Ye
  • Robert R. Bowers
  • Danyelle M. Townsend
  • Kenneth D. TewEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_258


Historical Background

Redox homeostasis is critical for normal cellular function, and cellular redox imbalance is associated with a number of human pathologies including cardiovascular disease and cancer (Ye et al. 2015). Reactive oxygen species (ROS) include the superoxide anion (O2●─), hydrogen peroxide (H2O2), and hydroxyl radicals (OH). Both exogenous and endogenous sources contribute to intracellular ROS levels. Environmental sources of ROS include ionizing radiation and certain drugs and toxins. The major endogenous source of ROS to be recognized is electrons leaking prematurely from mitochondrial electron transport chain complexes I and III that reduce molecular oxygen to superoxide anion. The superoxide produced is rapidly converted to hydrogen peroxide by spontaneous dismutation or by the activity of superoxide dismutase enzymes, and the hydrogen peroxide thus produced acts as a second messenger in...

This is a preview of subscription content, log in to check access.


  1. Bae SH, Sung SH, Cho EJ, Lee SK, Lee HE, Woo HA, et al. Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver. Hepatology. 2011;53(3):945–53.  https://doi.org/10.1002/hep.24104. PubMed PMID: 21319188.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bae SH, Sung SH, Lee HE, Kang HT, Lee SK, Oh SY, et al. Peroxiredoxin III and sulfiredoxin together protect mice from pyrazole-induced oxidative liver injury. Antioxid Redox Signal. 2012;17(10):1351–61.  https://doi.org/10.1089/ars.2011.4334. PubMed PMID: 22490042; PubMed Central PMCID: PMCPMC3437045.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Basu MK, Koonin EV. Evolution of eukaryotic cysteine sulfinic acid reductase, sulfiredoxin (Srx), from bacterial chromosome partitioning protein ParB. Cell Cycle. 2005;4(7):947–52.  https://doi.org/10.4161/cc.4.7.1786. PubMed PMID: 15917647.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Biteau B, Labarre J, Toledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature. 2003;425(6961):980–4.  https://doi.org/10.1038/nature02075. PubMed PMID: 14586471.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boukhenouna S, Mazon H, Branlant G, Jacob C, Toledano MB, Rahuel-Clermont S. Evidence that glutathione and the glutathione system efficiently recycle 1-cys sulfiredoxin in vivo. Antioxid Redox Signal. 2015;22(9):731–43.  https://doi.org/10.1089/ars.2014.5998. PubMed PMID: 25387359; PubMed Central PMCID: PMCPMC4361365.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bowers RR, Manevich Y, Townsend DM, Tew KD. Sulfiredoxin redox-sensitive interaction with S100A4 and non-muscle myosin IIA regulates cancer cell motility. Biochemistry. 2012;51(39):7740–54.  https://doi.org/10.1021/bi301006w. PubMed PMID: 22934964; PubMed Central PMCID: PMCPMC3472422.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chang TS, Jeong W, Woo HA, Lee SM, Park S, Rhee SG. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J Biol Chem. 2004;279(49):50994–1001.  https://doi.org/10.1074/jbc.M409482200. PubMed PMID: 15448164.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chi YH, Kim SY, Jung IJ, Shin MR, Jung YJ, Park JH, et al. Dual functions of Arabidopsis sulfiredoxin: acting as a redox-dependent sulfinic acid reductase and as a redox-independent nuclease enzyme. FEBS Lett. 2012;586(19):3493–9.  https://doi.org/10.1016/j.febslet.2012.08.002. PubMed PMID: 22967894.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010;48(6):749–62.  https://doi.org/10.1016/j.freeradbiomed.2009.12.022. PubMed PMID: 20045723; PubMed Central PMCID: PMCPMC2823977.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fang J, Nakamura T, Cho DH, Gu Z, Lipton SA. S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease. Proc Natl Acad Sci USA. 2007;104(47):18742–7.  https://doi.org/10.1073/pnas.0705904104. PubMed PMID: 18003920; PubMed Central PMCID: PMCPMC2141847.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Findlay VJ, Townsend DM, Morris TE, Fraser JP, He L, Tew KD. A novel role for human sulfiredoxin in the reversal of glutathionylation. Cancer Res. 2006;66(13):6800–6.  https://doi.org/10.1158/0008-5472.CAN-06-0484. PubMed PMID: 16818657.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Glauser DA, Brun T, Gauthier BR, Schlegel W. Transcriptional response of pancreatic beta cells to metabolic stimulation: large scale identification of immediate-early and secondary response genes. BMC Mol Biol. 2007;8:54.  https://doi.org/10.1186/1471-2199-8-54. PubMed PMID: 17587450; PubMed Central PMCID: PMCPMC1914353.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12(12):931–47.  https://doi.org/10.1038/nrd4002. PubMed PMID: 24287781.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hall A, Nelson K, Poole LB, Karplus PA. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid Redox Signal. 2011;15(3):795–815.  https://doi.org/10.1089/ars.2010.3624. PubMed PMID: 20969484; PubMed Central PMCID: PMCPMC3125576.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hess DT, Stamler JS. Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem. 2012;287(7):4411–8.  https://doi.org/10.1074/jbc.R111.285742. PubMed PMID: 22147701; PubMed Central PMCID: PMCPMC3281651.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ishaq M, Evans MD, Ostrikov KK. Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2-ASK1 apoptosis pathways and oxidative stress is mitigated by Srx-Nrf2 anti-oxidant system. Biochim Biophys Acta. 2014;1843(12):2827–37.  https://doi.org/10.1016/j.bbamcr.2014.08.011. PubMed PMID: 25173814.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, et al. Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell. 2004;117(5):625–35.  https://doi.org/10.1016/j.cell.2004.05.002. PubMed PMID: 15163410.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jeong W, Park SJ, Chang TS, Lee DY, Rhee SG. Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin. J Biol Chem. 2006;281(20):14400–7.  https://doi.org/10.1074/jbc.M511082200. PubMed PMID: 16565085.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jeong W, Bae SH, Toledano MB, Rhee SG. Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression. Free Radic Biol Med. 2012;53(3):447–56.  https://doi.org/10.1016/j.freeradbiomed.2012.05.020. PubMed PMID: 22634055.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jiang H, Wu L, Chen J, Mishra M, Chawsheen HA, Zhu H, et al. Sulfiredoxin promotes colorectal cancer cell invasion and metastasis through a novel mechanism of enhancing EGFR signaling. Mol Cancer Res. 2015;13(12):1554–66.  https://doi.org/10.1158/1541-7786.MCR-15-0240. PubMed PMID: 26290602; PubMed Central PMCID: PMCPMC4684963.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jonsson TJ, Lowther WT. The peroxiredoxin repair proteins. Subcell Biochem. 2007;44:115–41. PubMed PMID: 18084892; PubMed Central PMCID: PMCPMC2391273.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Jonsson TJ, Murray MS, Johnson LC, Poole LB, Lowther WT. Structural basis for the retroreduction of inactivated peroxiredoxins by human sulfiredoxin. Biochemistry. 2005;44(24):8634–42.  https://doi.org/10.1021/bi050131i. PubMed PMID: 15952770; PubMed Central PMCID: PMCPMC3928543.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jonsson TJ, Johnson LC, Lowther WT. Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace. Nature. 2008a;451(7174):98–101.  https://doi.org/10.1038/nature06415. PubMed PMID: 18172504; PubMed Central PMCID: PMCPMC2646140.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jonsson TJ, Murray MS, Johnson LC, Lowther WT. Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate. J Biol Chem. 2008b;283(35):23846–51.  https://doi.org/10.1074/jbc.M803244200. PubMed PMID: 18579529; PubMed Central PMCID: PMCPMC2527103.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jonsson TJ, Tsang AW, Lowther WT, Furdui CM. Identification of intact protein thiosulfinate intermediate in the reduction of cysteine sulfinic acid in peroxiredoxin by human sulfiredoxin. J Biol Chem. 2008c;283(34):22890–4.  https://doi.org/10.1074/jbc.C800124200. PubMed PMID: 18593714; PubMed Central PMCID: PMCPMC2517003.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jonsson TJ, Johnson LC, Lowther WT. Protein engineering of the quaternary sulfiredoxin.peroxiredoxin enzyme.substrate complex reveals the molecular basis for cysteine sulfinic acid phosphorylation. J Biol Chem. 2009;284(48):33305–10.  https://doi.org/10.1074/jbc.M109.036400. PubMed PMID: 19812042; PubMed Central PMCID: PMCPMC2785173.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kim H, Jung Y, Shin BS, Kim H, Song H, Bae SH, et al. Redox regulation of lipopolysaccharide-mediated sulfiredoxin induction, which depends on both AP-1 and Nrf2. J Biol Chem. 2010;285(45):34419–28.  https://doi.org/10.1074/jbc.M110.126839. PubMed PMID: 20826812; PubMed Central PMCID: PMCPMC2966056.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kim YS, Lee HL, Lee KB, Park JH, Chung WY, Lee KS, et al. Nuclear factor E2-related factor 2 dependent overexpression of sulfiredoxin and peroxiredoxin III in human lung cancer. Korean J Intern Med. 2011;26(3):304–13.  https://doi.org/10.3904/kjim.2011.26.3.304. PubMed PMID: 22016591; PubMed Central PMCID: PMCPMC3192203.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kim H, Lee GR, Kim J, Baek JY, Jo YJ, Hong SE, et al. Sulfiredoxin inhibitor induces preferential death of cancer cells through reactive oxygen species-mediated mitochondrial damage. Free Radic Biol Med. 2016a;91:264–74.  https://doi.org/10.1016/j.freeradbiomed.2015.12.023. PubMed PMID: 26721593.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kim J, Lee GR, Kim H, Jo YJ, Hong SE, Lee J, et al. Effective killing of cancer cells and regression of tumor growth by K27 targeting sulfiredoxin. Free Radic Biol Med. 2016b;101:384–92.  https://doi.org/10.1016/j.freeradbiomed.2016.11.001. PubMed PMID: 27825965.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Klomsiri C, Karplus PA, Poole LB. Cysteine-based redox switches in enzymes. Antioxid Redox Signal. 2011;14(6):1065–77.  https://doi.org/10.1089/ars.2010.3376. PubMed PMID: 20799881; PubMed Central PMCID: PMCPMC3064533.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lee W, Choi KS, Riddell J, Ip C, Ghosh D, Park JH, et al. Human peroxiredoxin 1 and 2 are not duplicate proteins: the unique presence of CYS83 in Prx1 underscores the structural and functional differences between Prx1 and Prx2. J Biol Chem. 2007;282(30):22011–22.  https://doi.org/10.1074/jbc.M610330200. PubMed PMID: 17519234.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lei K, Townsend DM, Tew KD. Protein cysteine sulfinic acid reductase (sulfiredoxin) as a regulator of cell proliferation and drug response. Oncogene. 2008;27(36):4877–87.  https://doi.org/10.1038/onc.2008.132. PubMed PMID: 18454177; PubMed Central PMCID: PMCPMC3399212.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Manevich Y, Feinstein SI, Fisher AB. Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST. Proc Natl Acad Sci USA. 2004;101(11):3780–5.  https://doi.org/10.1073/pnas.0400181101. PubMed PMID: 15004285; PubMed Central PMCID: PMCPMC374321.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Manevich Y, Hutchens S, Tew KD, Townsend DM. Allelic variants of glutathione S-transferase P1-1 differentially mediate the peroxidase function of peroxiredoxin VI and alter membrane lipid peroxidation. Free Radic Biol Med. 2013;54:62–70.  https://doi.org/10.1016/j.freeradbiomed.2012.10.556. PubMed PMID: 23142420; PubMed Central PMCID: PMCPMC3539142.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Merikallio H, Paakko P, Kinnula VL, Harju T, Soini Y. Nuclear factor erythroid-derived 2-like 2 (Nrf2) and DJ1 are prognostic factors in lung cancer. Hum Pathol. 2012;43(4):577–84.  https://doi.org/10.1016/j.humpath.2011.05.024. PubMed PMID: 21943684.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mishra M, Jiang H, Wu L, Chawsheen HA, Wei Q. The sulfiredoxin-peroxiredoxin (Srx-Prx) axis in cell signal transduction and cancer development. Cancer Lett. 2015;366(2):150–9.  https://doi.org/10.1016/j.canlet.2015.07.002. PubMed PMID: 26170166; PubMed Central PMCID: PMCPMC4532351.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Moon JC, Hah YS, Kim WY, Jung BG, Jang HH, Lee JR, et al. Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J Biol Chem. 2005;280(31):28775–84.  https://doi.org/10.1074/jbc.M505362200. PubMed PMID: 15941719.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Morinaka A, Funato Y, Uesugi K, Miki H. Oligomeric peroxiredoxin-I is an essential intermediate for p53 to activate MST1 kinase and apoptosis. Oncogene. 2011;30(40):4208–18.  https://doi.org/10.1038/onc.2011.139. PubMed PMID: 21516123.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nakamura T, Lipton SA. Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases. Trends Pharmacol Sci. 2016;37(1):73–84.  https://doi.org/10.1016/j.tips.2015.10.002. PubMed PMID: 26707925; PubMed Central PMCID: PMCPMC4698225.CrossRefPubMedGoogle Scholar
  41. Noh YH, Baek JY, Jeong W, Rhee SG, Chang TS. Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III. J Biol Chem. 2009;284(13):8470–7.  https://doi.org/10.1074/jbc.M808981200. PubMed PMID: 19176523; PubMed Central PMCID: PMCPMC2659205.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Papadia S, Soriano FX, Leveille F, Martel MA, Dakin KA, Hansen HH, et al. Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci. 2008;11(4):476–87.  https://doi.org/10.1038/nn2071. PubMed PMID: 18344994; PubMed Central PMCID: PMCPMC2556874.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Park JW, Mieyal JJ, Rhee SG, Chock PB. Deglutathionylation of 2-Cys peroxiredoxin is specifically catalyzed by sulfiredoxin. J Biol Chem. 2009;284(35):23364–74.  https://doi.org/10.1074/jbc.M109.021394. PubMed PMID: 19561357; PubMed Central PMCID: PMCPMC2749110.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Park JW, Piszczek G, Rhee SG, Chock PB. Glutathionylation of peroxiredoxin I induces decamer to dimers dissociation with concomitant loss of chaperone activity. Biochemistry. 2011;50(15):3204–10.  https://doi.org/10.1021/bi101373h. PubMed PMID: 21401077; PubMed Central PMCID: PMCPMC3176717.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Poynton RA, Hampton MB. Peroxiredoxins as biomarkers of oxidative stress. Biochim Biophys Acta. 2014;1840(2):906–12.  https://doi.org/10.1016/j.bbagen.2013.08.001. PubMed PMID: 23939310.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rhee SG, Woo HA. Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H(2)O(2), and protein chaperones. Antioxid Redox Signal. 2011;15(3):781–94.  https://doi.org/10.1089/ars.2010.3393. PubMed PMID: 20919930.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rogers S, de Souza AR, Zago M, Iu M, Guerrina N, Gomez A, et al. Aryl hydrocarbon receptor (AhR)-dependent regulation of pulmonary miRNA by chronic cigarette smoke exposure. Sci Rep. 2017;7:40539.  https://doi.org/10.1038/srep40539. PubMed PMID: 28079158; PubMed Central PMCID: PMCPMC5227990.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Roussel X, Bechade G, Kriznik A, Van Dorsselaer A, Sanglier-Cianferani S, Branlant G, et al. Evidence for the formation of a covalent thiosulfinate intermediate with peroxiredoxin in the catalytic mechanism of sulfiredoxin. J Biol Chem. 2008;283(33):22371–82.  https://doi.org/10.1074/jbc.M800493200. PubMed PMID: 18552404.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Roussel X, Kriznik A, Richard C, Rahuel-Clermont S, Branlant G. Catalytic mechanism of Sulfiredoxin from Saccharomyces cerevisiae passes through an oxidized disulfide sulfiredoxin intermediate that is reduced by thioredoxin. J Biol Chem. 2009;284(48):33048–55.  https://doi.org/10.1074/jbc.M109.035352. PubMed PMID: 19801666; PubMed Central PMCID: PMCPMC2785145.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Roussel X, Boukhenouna S, Rahuel-Clermont S, Branlant G. The rate-limiting step of sulfiredoxin is associated with the transfer of the gamma-phosphate of ATP to the sulfinic acid of overoxidized typical 2-Cys peroxiredoxins. FEBS Lett. 2011;585(3):574–8.  https://doi.org/10.1016/j.febslet.2011.01.012. PubMed PMID: 21237158.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Saccoccia F, Di Micco P, Boumis G, Brunori M, Koutris I, Miele AE, et al. Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin. Structure. 2012;20(3):429–39.  https://doi.org/10.1016/j.str.2012.01.004. PubMed PMID: 22405002; PubMed Central PMCID: PMCPMC3299984.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sarill M, Zago M, Sheridan JA, Nair P, Matthews J, Gomez A, et al. The aryl hydrocarbon receptor suppresses cigarette-smoke-induced oxidative stress in association with dioxin response element (DRE)-independent regulation of sulfiredoxin 1. Free Radic Biol Med. 2015;89:342–57.  https://doi.org/10.1016/j.freeradbiomed.2015.08.007. PubMed PMID: 26408075.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Singh A, Ling G, Suhasini AN, Zhang P, Yamamoto M, Navas-Acien A, et al. Nrf2-dependent sulfiredoxin-1 expression protects against cigarette smoke-induced oxidative stress in lungs. Free Radic Biol Med. 2009;46(3):376–86.  https://doi.org/10.1016/j.freeradbiomed.2008.10.026. PubMed PMID: 19027064; PubMed Central PMCID: PMCPMC2828157.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Soini Y, Eskelinen M, Juvonen P, Karja V, Haapasaari KM, Saarela A, et al. Nuclear Nrf2 expression is related to a poor survival in pancreatic adenocarcinoma. Pathol Res Pract. 2014;210(1):35–9.  https://doi.org/10.1016/j.prp.2013.10.001. PubMed PMID: 24189098.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Soriano FX, Leveille F, Papadia S, Higgins LG, Varley J, Baxter P, et al. Induction of sulfiredoxin expression and reduction of peroxiredoxin hyperoxidation by the neuroprotective Nrf2 activator 3H-1,2-dithiole-3-thione. J Neurochem. 2008;107(2):533–43.  https://doi.org/10.1111/j.1471-4159.2008.05648.x. PubMed PMID: 18761713; PubMed Central PMCID: PMCPMC2635540.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sunico CR, Sultan A, Nakamura T, Dolatabadi N, Parker J, Shan B, et al. Role of sulfiredoxin as a peroxiredoxin-2 denitrosylase in human iPSC-derived dopaminergic neurons. Proc Natl Acad Sci U S A. 2016;113(47):E7564–E71.  https://doi.org/10.1073/pnas.1608784113. PubMed PMID: 27821734; PubMed Central PMCID: PMCPMC5127299.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57(3–4):145–55. PubMed PMID: 12818476.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Townsend DM, Findlay VJ, Fazilev F, Ogle M, Fraser J, Saavedra JE, et al. A glutathione S-transferase pi-activated prodrug causes kinase activation concurrent with S-glutathionylation of proteins. Mol Pharmacol. 2006;69(2):501–8.  https://doi.org/10.1124/mol.105.018523. PubMed PMID: 16288082.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wei Q, Jiang H, Matthews CP, Colburn NH. Sulfiredoxin is an AP-1 target gene that is required for transformation and shows elevated expression in human skin malignancies. Proc Natl Acad Sci USA. 2008;105(50):19738–43.  https://doi.org/10.1073/pnas.0810676105. PubMed PMID: 19057013; PubMed Central PMCID: PMCPMC2604998.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wei Q, Jiang H, Xiao Z, Baker A, Young MR, Veenstra TD, et al. Sulfiredoxin-Peroxiredoxin IV axis promotes human lung cancer progression through modulation of specific phosphokinase signaling. Proc Natl Acad Sci USA. 2011;108(17):7004–9.  https://doi.org/10.1073/pnas.1013012108. PubMed PMID: 21487000; PubMed Central PMCID: PMCPMC3084097.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wei Q, Jiang H, Baker A, Dodge LK, Gerard M, Young MR, et al. Loss of sulfiredoxin renders mice resistant to azoxymethane/dextran sulfate sodium-induced colon carcinogenesis. Carcinogenesis. 2013;34(6):1403–10.  https://doi.org/10.1093/carcin/bgt059. PubMed PMID: 23393226; PubMed Central PMCID: PMCPMC3670259.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Woo HA, Chae HZ, Hwang SC, Yang KS, Kang SW, Kim K, et al. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science. 2003;300(5619):653–6.  https://doi.org/10.1126/science.1080273. PubMed PMID: 12714748.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Woo HA, Jeong W, Chang TS, Park KJ, Park SJ, Yang JS, et al. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J Biol Chem. 2005;280(5):3125–8.  https://doi.org/10.1074/jbc.C400496200. PubMed PMID: 15590625.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science. 2003a;300(5619):650–3.  https://doi.org/10.1126/science.1080405. PubMed PMID: 12714747.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wood ZA, Schroder E, Robin Harris J, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003b;28(1):32–40. PubMed PMID: 12517450.PubMedCrossRefGoogle Scholar
  66. Wu L, Jiang H, Chawsheen HA, Mishra M, Young MR, Gerard M, et al. Tumor promoter-induced sulfiredoxin is required for mouse skin tumorigenesis. Carcinogenesis. 2014;35(5):1177–84.  https://doi.org/10.1093/carcin/bgu035. PubMed PMID: 24503444; PubMed Central PMCID: PMCPMC4004209.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ye ZW, Zhang J, Townsend DM, Tew KD. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta. 2015;1850(8):1607–21.  https://doi.org/10.1016/j.bbagen.2014.11.010. PubMed PMID: 25445706; PubMed Central PMCID: PMCPMC4433447.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Yu S, Wang X, Lei S, Chen X, Liu Y, Zhou Y, et al. Sulfiredoxin-1 protects primary cultured astrocytes from ischemia-induced damage. Neurochem Int. 2015;82:19–27.  https://doi.org/10.1016/j.neuint.2015.01.005. PubMed PMID: 25620665.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhou Y, Duan S, Zhou Y, Yu S, Wu J, Wu X, et al. Sulfiredoxin-1 attenuates oxidative stress via Nrf2/ARE pathway and 2-Cys Prdxs after oxygen-glucose deprivation in astrocytes. J Mol Neurosci. 2015a;55(4):941–50.  https://doi.org/10.1007/s12031-014-0449-6. PubMed PMID: 25407820.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhou Y, Zhou Y, Yu S, Wu J, Chen Y, Zhao Y. Sulfiredoxin-1 exerts anti-apoptotic and neuroprotective effects against oxidative stress-induced injury in rat cortical astrocytes following exposure to oxygen-glucose deprivation and hydrogen peroxide. Int J Mol Med. 2015b;36(1):43–52.  https://doi.org/10.3892/ijmm.2015.2205. PubMed PMID: 25955519; PubMed Central PMCID: PMCPMC4494579.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jie Zhang
    • 1
  • Zhi-wei Ye
    • 1
  • Robert R. Bowers
    • 2
  • Danyelle M. Townsend
    • 3
  • Kenneth D. Tew
    • 1
    Email author
  1. 1.Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonUSA
  2. 2.SEERCharlestonUSA
  3. 3.Department of Pharmaceutical and Biomedical SciencesMedical University of South CarolinaCharlestonUSA