Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

NF-κB Family

  • Lara Valiño-Rivas
  • Laura Gonzalez-Lafuente
  • Ana B. Sanz
  • Jonay Poveda
  • Alberto Ortiz
  • Maria D. Sanchez-Niño
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_220

Synonyms

List of Discussed NF-κB Family Members and Regulatory Molecules

NFκB1: p105, p50, KBF1, EBP-1

RelA: p65, NFKB3

RelB: I-REL

REL: c-Rel

NFκB2: p100, p52; LYT10

Bcl-3: BCL4, D19S37

NFKBIA: IκBα, IKBA, MAD-3, NFKBI

NFKBIB: IκBβ, IKBB, TRIP9

NFKBIE: IκBε, IKBE

NFKBIZ: IκBζ, IKBZ, INAP, MAIL

CHUK: IKKα, IKBKA, IKK1, IKKA, NFKBIKA, TCF16

IKBKB: IKKβ, IKK2, IKKB, NFKBIKB

IKBKG: IKKγ, NEMO, AMCBX1, FIP-3, FIP3, Fip3p, IP, IP1, IP2, IPD2, IKKAP1, IKKG

IKBKE: IKKε, IKKE, IKKI

MAP3K14: NIK, HS, HSNIK

TNFAIP3: A20, OTUD7C, TNFA1P2

OTUD7B: CEZANNE

CYLD: HSPC057, CDMT, CYLD1, CYLDI, EAC, MFT1, SBS, TEM, USPL2

Historical Background: Discovery and Structure

NF-κB (nuclear factor-kappa-light-chain-enhancer of activated B cells) is a collective term for a family of transcription factors. NF-κB has a complex regulation, modulates the expression of a wide set of genes, both by promoting and by suppressing...

This is a preview of subscription content, log in to check access.

References

  1. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature. 1995;376:167–70.CrossRefPubMedGoogle Scholar
  2. Caamaño JH, Rizzo CA, Durham SK, Barton DS, Raventós-Suárez C, Snapper CM, Bravo R. Nuclear factor (NF)-kappa B2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. J Exp Med. 1998;187:185–96.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Collins T, Cybulsky MI. NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest. 2001;107:255–64.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ghosh S, Hayden MS. New regulators of NF-kappaB in inflammation. Nat Rev Immunol. 2008;8:837–48.CrossRefPubMedGoogle Scholar
  5. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 2006;25:6680–4.CrossRefPubMedGoogle Scholar
  6. González-Guerrero C, Ocaña-Salceda C, Berzal S, Carrasco S, Fernández-Fernández B, Cannata-Ortiz P, Egido J, Ortiz A, Ramos AM. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells. Toxicol Appl Pharmacol. 2013;272(3):825–41.CrossRefPubMedGoogle Scholar
  7. Haas AL. Linear polyubiquitylation: the missing link in NF-kappaB signalling. Nat Cell Biol. 2009;11:116–8.CrossRefPubMedGoogle Scholar
  8. Harris J, Olière S, Sharma S, Sun Q, Lin R, Hiscott J, Grandvaux N. Nuclear accumulation of cRel following C-terminal phosphorylation by TBK1/IKKepsilon. J Immunol. 2006;177:2527–35.CrossRefPubMedGoogle Scholar
  9. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004;18:2195–224.CrossRefPubMedGoogle Scholar
  10. He WA, Berardi E, Cardillo VM, Acharyya S, Aulino P, Thomas-Ahner J, Wang J, Bloomston M, Muscarella P, Nau P, Shah N, Butchbach ME, Ladner K, Adamo S, Rudnicki MA, Keller C, Coletti D, Montanaro F, Guttridge DC. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J Clin Invest. 2013;123(11):4821–35.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Hoffmann A, Levchenko A, Scott ML, Baltimore D. The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science. 2002;298:1241–5.CrossRefPubMedGoogle Scholar
  12. Hu H, Brittain GC, Chang JH, Puebla-Osorio N, Jin J, Zal A, Xiao Y, Cheng X, Chang M, Fu YX, Zal T, Zhu C, Sun SC. OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3. Nature. 2013;494(7437):371–4.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Karin M, Delhase M. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol. 2000;12:85–98.CrossRefGoogle Scholar
  14. Kellogg RA, Tay S. Noise facilitates transcriptional control under dynamic inputs. Cell. 2015;160(3):381–92.CrossRefPubMedGoogle Scholar
  15. Korc M. RelA: a tale of a stitch in time. J Clin Invest. 2016;126(8):2799–801.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-kappaB: its role in health and disease. J Mol Med. 2004;82:434–48.CrossRefPubMedGoogle Scholar
  17. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002;2:725–34.CrossRefPubMedGoogle Scholar
  18. Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, Johnson R, Karin M. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med. 1999;189:1839–45.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Moreno JA, Izquierdo MC, Sanchez-Niño MD, Suárez-Alvarez B, Lopez-Larrea C, Jakubowski A, Blanco J, Ramirez R, Selgas R, Ruiz-Ortega M, Egido J, Ortiz A, Sanz AB. The inflammatory cytokines TWEAK and TNF{alpha} reduce renal klotho expression through NF{kappa}B. J Am Soc Nephrol. 2011;22:1315–25.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Neurath MF, Pettersson S, Meyer zum Büschenfelde KH, Strober W. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-kappa B abrogates established experimental colitis in mice. Nat Med. 1996;2:998–1004.CrossRefPubMedGoogle Scholar
  21. Ortiz A, Husi H, Gonzalez-Lafuente L, Valiño-Rivas L, Fresno M, Sanz AB, Mullen W, Albalat A, Mezzano S, Vlahou T, Mischak H, Sanchez-Niño MD. Mitogen-activated protein kinase 14 promotes AKI. J Am Soc Nephrol. 2017;28(3):823–836.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Pannicke U, Baumann B, Fuchs S, Henneke P, Rensing-Ehl A, Rizzi M, Janda A, Hese K, Schlesier M, Holzmann K, Borte S, Laux C, Rump EM, Rosenberg A, Zelinski T, Schrezenmeier H, Wirth T, Ehl S, Schroeder ML, Schwarz K. Deficiency of innate and acquired immunity caused by an IKBKB mutation. N Engl J Med. 2013;369(26):2504–14.CrossRefPubMedGoogle Scholar
  23. Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y, Lee R, Tatevossian RG, Phoenix TN, Thiruvenkatam R, White E, Tang B, Orisme W, Gupta K, Rusch M, Chen X, Li Y, Nagahawhatte P, Hedlund E, Finkelstein D, Wu G, Shurtleff S, Easton J, Boggs K, Yergeau D, Vadodaria B, Mulder HL, Becksfort J, Gupta P, Huether R, Ma J, Song G, Gajjar A, Merchant T, Boop F, Smith AA, Ding L, Lu C, Ochoa K, Zhao D, Fulton RS, Fulton LL, Mardis ER, Wilson RK, Downing JR, Green DR, Zhang J, Ellison DW, Gilbertson RJ. C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature. 2014;506(7489):451–5.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 3Poveda J, Tabara LC, Fernandez-Fernandez B, Martin-Cleary C, Sanz AB, Selgas R, Ortiz A, Sanchez-Niño MD. TWEAK/Fn14 and Non-Canonical NF-kappaB Signaling in Kidney Disease. Front Immunol. 2013;4:447.Google Scholar
  25. Poveda J, Sanz AB, Rayego-Mateos S, Ruiz-Ortega M, Carrasco S, Ortiz A, Sanchez-Niño MD. NFκBiz protein downregulation in acute kidney injury: modulation of inflammation and survival in tubular cells. Biochim Biophys Acta. 2016;1862(4):635–46.CrossRefPubMedGoogle Scholar
  26. Quinton LJ, Blahna MT, Jones MR, Allen E, Ferrari JD, Hilliard KL, Zhang X, Sabharwal V, Algül H, Akira S, Schmid RM, Pelton SI, Spira A, Mizgerd JP. Hepatocyte-specific mutation of both NF-κB RelA and STAT3 abrogates the acute phase response in mice. J Clin Invest. 2012;122(5):1758–63.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Rackov G, Hernández-Jiménez E, Shokri R, Carmona-Rodríguez L, Mañes S, Álvarez-Mon M, López-Collazo E, Martínez-A C, Balomenos D. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-κB and IFN-β. J Clin Invest. 2016;126(8):3089–103.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Ruiz-Andres O, Suarez-Alvarez B, Sánchez-Ramos C, Monsalve M, Sanchez-Niño MD, Ruiz-Ortega M, Egido J, Ortiz A, Sanz AB. The inflammatory cytokine TWEAK decreases PGC-1α expression and mitochondrial function in acute kidney injury. Kidney Int. 2016;89(2):399–410.CrossRefPubMedGoogle Scholar
  29. Sanz AB, Sanchez-Niño MD, Izquierdo MC, Jakubowski A, Justo P, Blanco-Colio LM, Ruiz-Ortega M, Selgas R, Egido J, Ortiz A. TWEAK activates the non-canonical NFkappaB pathway in murine renal tubular cells: modulation of CCL21. PLoS One. 2010a;5:e8955.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Sanz AB, Sanchez-Niño MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A. NF-kappaB in renal inflammation. J Am Soc Nephrol. 2010b;21:1254–62.CrossRefPubMedGoogle Scholar
  31. Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell. 1986;47:921–8.CrossRefPubMedGoogle Scholar
  32. Senftleben U, Cao Y, Xiao G, Greten FR, Krähn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC, Karin M. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science. 2001;293:1495–9.CrossRefPubMedGoogle Scholar
  33. Sha WC, Liou HC, Tuomanen EI, Baltimore D. Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell. 1995;80:321–30.CrossRefPubMedGoogle Scholar
  34. Shinohara H, Behar M, Inoue K, Hiroshima M, Yasuda T, Nagashima T, Kimura S, Sanjo H, Maeda S, Yumoto N, Ki S, Akira S, Sako Y, Hoffmann A, Kurosaki T, Okada-Hatakeyama M. Positive feedback within a kinase signaling complex functions as a switch mechanism for NF-κB activation. Science. 2014;344(6185):760–4.CrossRefPubMedGoogle Scholar
  35. Song L, Liu L, Wu Z, Li Y, Ying Z, Lin C, Wu J, Hu B, Cheng SY, Li M, Li J. TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets. J Clin Invest. 2012;122(10):3563–78.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Starokadomskyy P, Gluck N, Li H, Chen B, Wallis M, Maine GN, Mao X, Zaidi IW, Hein MY, McDonald FJ, Lenzner S, Zecha A, Ropers HH, Kuss AW, McGaughran J, Gecz J, Burstein E. CCDC22 deficiency in humans blunts activation of proinflammatory NF-κB signaling. J Clin Invest. 2013;123(5):2244–56.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Tilstra JS, Robinson AR, Wang J, Gregg SQ, Clauson CL, Reay DP, Nasto LA, St Croix CM, Usas A, Vo N, Huard J, Clemens PR, Stolz DB, Guttridge DC, Watkins SC, Garinis GA, Wang Y, Niedernhofer LJ, Robbins PD. NF-κB inhibition delays DNA damage-induced senescence and aging in mice. J Clin Invest. 2012;122(7):2601–12.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Van der Heiden K, Cuhlmann S, le Luong A, Zakkar M, Evans PC. Role of nuclear factor kappaB in cardiovascular health and disease. Clin Sci (Lond). 2010;118:593–605.CrossRefGoogle Scholar
  39. Wietek C, Cleaver CS, Ludbrook V, Wilde J, White J, Bell DJ, Lee M, Dickson M, Ray KP, O’Neill LA. IkappaB kinase epsilon interacts with p52 and promotes transactivation via p65. J Biol Chem. 2006;281:34973–81.CrossRefPubMedGoogle Scholar
  40. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001;107:135–42.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR, McGeough MD, Ellisman MH, Seki E, Gustafsson AB, Hoffman HM, Diaz-Meco MT, Moscat J, Karin M. NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell. 2016;164(5):89–910.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Lara Valiño-Rivas
    • 1
  • Laura Gonzalez-Lafuente
    • 1
  • Ana B. Sanz
    • 2
  • Jonay Poveda
    • 1
  • Alberto Ortiz
    • 2
  • Maria D. Sanchez-Niño
    • 2
  1. 1.IIS-Fundacion Jimenez DiazMadridSpain
  2. 2.IIS-Fundacion Jimenez Diaz and Universidad Autonoma de MadridMadridSpain