Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Pak2

  • Sheng-Wei Yang
  • Yuan-Hao Hsu
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_202

Synonyms

 γ-Pak;  Gamma-Pak;  Pak65;  PAKI

Historical Background

Pak2 (p21-activated protein kinase 2) is the serine/threonine protein kinase PAK I, which was first detected as a protease activated form in Dr. Traugh’s laboratory in early 1980s (Tahara and Traugh 1981, 1982). Pak2 was further cloned and sequenced in the same lab in 1996 (Jakobi et al. 1996). Pak2 belongs to the PAK (p21-activated protein kinase) family, which can be activated by Rac and Cdc42 (Manser et al. 1994). The PAK family consists of group I protein kinases, including the highly homologous Pak1 (α-PAK), Pak2 (γ-PAK), and Pak3 (β-PAK), and the recently identified group II, including Pak4, Pak5, and Pak6 (Jaffer and Chernoff 2002). The 60-kDa Pak1 is expressed in brain and is also detected in muscle and spleen. The 60-kDa Pak3 is expressed mainly in brain. Pak2 is 58 kDa and expressed ubiquitously in mammalian cells (Roig and Traugh 2001) (http://www.genecards.org/cgi-bin/carddisp.pl?gene=PAK2).

Pak2 Structural...

This is a preview of subscription content, log in to check access.

References

  1. Bokoch GM. Caspase-mediated activation of PAK2 during apoptosis: proteolytic kinase activation as a general mechanism of apoptotic signal transduction? Cell Death Differ. 1998;5(8):637–45.CrossRefPubMedGoogle Scholar
  2. Coniglio SJ, Zavarella S, Symons MH. Pak1 and Pak2 mediate tumor cell invasion through distinct signaling mechanisms. Mol Cell Biol. 2008;28(12):4162–72.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Dummler B, Ohshiro K, Kumar R, Field J. Pak protein kinases and their role in cancer. Cancer Metastasis Rev. 2009;28(1–2):51–63.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Gatti A, Huang Z, Tuazon PT, Traugh JA. Multisite autophosphorylation of p21-activated protein kinase gamma-PAK as a function of activation. J Biol Chem. 1999;274(12):8022–8.CrossRefPubMedGoogle Scholar
  5. Hsu YH, Johnson DA, Traugh JA. Analysis of conformational changes during activation of protein kinase Pak2 by amide hydrogen/deuterium exchange. J Biol Chem. 2008;283(52):36397–405.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Huang Z, Traugh JA, Bishop JM. Negative control of the Myc protein by the stress-responsive kinase Pak2. Mol Cell Biol. 2004;24(4):1582–94.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Jaffer ZM, Chernoff J. p21-activated kinases: three more join the Pak. Int J Biochem Cell Biol. 2002;34(7):713–7.CrossRefPubMedGoogle Scholar
  8. Jakobi R, Chen CJ, Tuazon PT, Traugh JA. Molecular cloning and sequencing of the cytostatic G protein-activated protein kinase PAK I. J Biol Chem. 1996;271(11):6206–11.CrossRefPubMedGoogle Scholar
  9. Jakobi R, McCarthy CC, Koeppel MA, Stringer DK. Caspase-activated PAK-2 is regulated by subcellular targeting and proteasomal degradation. J Biol Chem. 2003;278(40):38675–85.CrossRefPubMedGoogle Scholar
  10. Kissil JL, Johnson KC, Eckman MS, Jacks T. Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem. 2002;277(12):10394–9.CrossRefPubMedGoogle Scholar
  11. Krautkramer E, Giese SI, Gasteier JE, Muranyi W, Fackler OT. Human immunodeficiency virus type 1 Nef activates p21-activated kinase via recruitment into lipid rafts. J Virol. 2004;78(8):4085–97.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Kumar R, Gururaj AE, Barnes CJ. p21-activated kinases in cancer. Nat Rev Cancer. 2006;6(6):459–71.CrossRefPubMedGoogle Scholar
  13. Lei M, Lu W, Meng W, Parrini MC, Eck MJ, Mayer BJ, et al. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell. 2000;102(3):387–97.CrossRefPubMedGoogle Scholar
  14. Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature. 1994;367(6458):40–6.CrossRefPubMedGoogle Scholar
  15. Roig J, Traugh JA. Cytostatic p21 G protein-activated protein kinase gamma-PAK. Vitam Horm. 2001;62:167–98.CrossRefPubMedGoogle Scholar
  16. Tahara SM, Traugh JA. Cyclic Nucleotide-independent protein kinases from rabbit reticulocytes. Identification and characterization of a protein kinase activated by proteolysis. J Biol Chem. 1981;256(22):11558–64.PubMedGoogle Scholar
  17. Tahara SM, Traugh JA. Differential activation of two protease-activated protein kinases from reticulocytes by a Ca2+-stimulated protease and identification of phosphorylated translational components. Eur J Biochem. 1982;126(2):395–9.CrossRefPubMedGoogle Scholar
  18. Tu H, Wigler M. Genetic evidence for Pak1 autoinhibition and its release by Cdc42. Mol Cell Biol. 1999;19(1):602–11.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Vilas GL, Corvi MM, Plummer GJ, Seime AM, Lambkin GR, Berthiaume LG. Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2 (PAK2) potentiates late apoptotic events. Proc Natl Acad Sci U S A. 2006;103(17):6542–7.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Walter BN, Huang Z, Jakobi R, Tuazon PT, Alnemri ES, Litwack G, et al. Cleavage and activation of p21-activated protein kinase gamma-PAK by CPP32 (caspase 3). Effects of autophosphorylation on activity. J Biol Chem. 1998;273(44):28733–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of ChemistryTunghai UniversityTaichungTaiwan