Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Nan Yagishita-Kyo
  • Masatoshi Inoue
  • Mio Nonaka
  • Hiroyuki Okuno
  • Haruhiko BitoEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_180


Historical Background

Cyclic AMP-responsive element binding protein (CREB) is a transcription factor that was originally discovered and characterized from studies of hormone-induced cAMP-dependent regulation of cellular functions. In particular, CREB was found to be critical for stimulus-induced somatostatin upregulation downstream of glucagon and epinephrine. The mechanism of hormone-induced cAMP-dependent increase in somatostatin gene transcription was narrowed down to a 8-bp element in the somatostatin promoter region, which was named cAMP-responsive element (CRE). CREB was identified as a protein factor that bound to CRE sequence and was purified to homogeneity from nuclear extracts using a CRE affinity chromatography. CREB binds to a specific palindromic CRE sequence, 5′-TGACGTCA-3′ as well as a half-site CRE motif (5′-TGACG-3′) (Montminy and Bilezikjian 1987; Mayr and...

This is a preview of subscription content, log in to check access.


  1. Ahn S, Olive M, Aggarwal S, Krylov D, Ginty DD, Vinson C. A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol Cell Biol. 1998;18:967–77.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Barco A, Alarcon JM, Kandel ER. Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell. 2002;108:689–703.PubMedCrossRefGoogle Scholar
  3. Bito H, Deisseroth K, Tsien RW. CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell. 1996;87:1203–14.PubMedCrossRefGoogle Scholar
  4. Bito H, Takemoto-Kimura S. Ca2+/CREB/CBP-dependent gene regulation: a shared mechanism critical in long-term synaptic plasticity and neuronal survival. Cell Calcium. 2003;34:425–30.PubMedCrossRefGoogle Scholar
  5. Bittinger MA, McWhinnie E, Meltzer J, Iourgenko V, Latario B, Liu X, Chen CH, Song C, Garza D, Labow M. Activation of cAMP response element-mediated gene expression by regulated nuclear transport of TORC proteins. Curr Biol. 2004;14:2156–61.PubMedCrossRefGoogle Scholar
  6. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature. 1993;365:855–9.PubMedCrossRefGoogle Scholar
  7. Conkright MD, Canettieri G, Screaton R, Guzman E, Miraglia L, Hogenesch JB, Montminy M. TORCs: transducers of regulated CREB activity. Mol Cell. 2003;12:413–23.PubMedCrossRefGoogle Scholar
  8. Conkright MD, Montminy M. CREB: the unindicted cancer co-conspirator. Trends Cell Biol. 2005;15:457–9.PubMedCrossRefGoogle Scholar
  9. Dentin R, Liu Y, Koo SH, Hedrick S, Vargas T, Heredia J, Yates 3rd J, Montminy M. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature. 2007;449:366–9.PubMedCrossRefGoogle Scholar
  10. Ferreri K, Gill G, Montminy M. The cAMP-regulated transcription factor CREB interacts with a component of the TFIID complex. Proc Natl Acad Sci U S A. 1994;91:1210–3.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Friedrich MW, Aramuni G, Mank M, Mackinnon JA, Griesbeck O. Imaging CREB activation in living cells. J Biol Chem. 2010;285:23285–95.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Gonzalez GA, Montminy MR. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell. 1989;59:675–80.PubMedCrossRefGoogle Scholar
  13. Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell. 2004;119:1041–54.PubMedPubMedCentralGoogle Scholar
  14. Iourgenko V, Zhang W, Mickanin C, Daly I, Jiang C, Hexham JM, Orth AP, Miraglia L, Meltzer J, Garza D, Chirn GW, McWhinnie E, Cohen D, Skelton J, Terry R, Yu Y, Bodian D, Buxton FP, Zhu J, Song C, Labow MA. Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc Natl Acad Sci U S A. 2003;100:12147–52.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Ishimoto T, Mano H, Mori H. In vivo imaging of CREB phosphorylation in awake-mouse brain. Sci Rep. 2015;5:9757.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001;294:1030–8.PubMedCrossRefGoogle Scholar
  17. Lonze BE, Riccio A, Cohen S, Ginty DD. Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron. 2002;34:371–85.PubMedCrossRefGoogle Scholar
  18. Mantamadiotis T, Lemberger T, Bleckmann SC, Kern H, Kretz O, Martin Villalba A, Tronche F, Kellendonk C, Gau D, Kapfhammer J, Otto C, Schmid W, Schütz G. Disruption of CREB function in brain leads to neurodegeneration. Nat Genet. 2002;31:47–54.PubMedCrossRefGoogle Scholar
  19. Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001;2:599–609.PubMedCrossRefGoogle Scholar
  20. Montminy MR, Bilezikjian LM. Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature. 1987;328:175–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Nagai Y, Miyazaki M, Aoki R, Zama T, Inouye S, Hirose K, Iino M, Hagiwara M. A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nat Biotechnol. 2000;18:313–6.PubMedCrossRefGoogle Scholar
  22. Nonaka M. A Janus-like role of CREB protein: enhancement of synaptic property in mature neurons and suppression of synaptogenesis and reduced network synchrony in early development. J Neurosci. 2009;29:6389–91.PubMedCrossRefGoogle Scholar
  23. Nonaka M, Kim R, Fukushima H, Sasaki K, Suzuki K, Okamura M, Ishii Y, Kawashima T, Kamijo S, Takemoto-Kimura S, Okuno H, Kida S, Bito H. Region-specific activation of CRTC1-CREB signaling mediates long-term fear memory. Neuron. 2014;84:92–106.PubMedCrossRefGoogle Scholar
  24. Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates 3rd JR, Takemori H, Okamoto M, Montminy M. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell. 2004;119:61–74.PubMedCrossRefGoogle Scholar
  25. Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68:821–61.PubMedCrossRefGoogle Scholar
  26. Silva AJ, Kogan JH, Frankland PW, Kida S. CREB and memory. Annu Rev Neurosci. 1998;21:127–48.PubMedCrossRefGoogle Scholar
  27. Spotts JM, Dolmetsch RE, Greenberg ME. Time-lapse imaging of a dynamic phosphorylation-dependent protein-protein interaction in mammalian cells. Proc Natl Acad Sci U S A. 2002;99:15142–7.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Teich AF, Nicholls RE, Puzzo D, Fiorito J, Purgatorio R, Fa’ M, Arancio O. Synaptic therapy in Alzheimer’s disease: a CREB-centric approach. Neurotherapeutics. 2015;12:29–41.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson B, Hogenesch JB, Unterman T, Young RA, Montminy M. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A. 2005;102:4459–64.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Nan Yagishita-Kyo
    • 1
  • Masatoshi Inoue
    • 1
  • Mio Nonaka
    • 1
  • Hiroyuki Okuno
    • 1
  • Haruhiko Bito
    • 1
    Email author
  1. 1.Department of NeurochemistryThe University of Tokyo Graduate School of MedicineTokyoJapan