Skip to main content

Ric-8

  • Reference work entry
  • First Online:
  • 55 Accesses

Synonyms

Resistance to inhibitors of cholinesterase 8; Ric-8A; Ric-8B; Synembryn

Historical Background

Discovery of Ric-8 proteins: The Caenorhabditis elegans RIC-8 gene and a homologous mouse gene that was later termed Ric-8A (or a synembryn) were discovered by Miller and Rand using a genetic screen to obtain C. elegans mutants that were resistant to the inhibitor of cholinesterase, aldicarb (Miller et al. 1996). Aldicarb treatment of wild-type worms leads to neurotoxic accumulation of postsynaptic acetylcholine and subsequent death. Ric mutants lived in the presence of aldicarb because they contained gene defects that restored normal acetylcholine levels, primarily by decreasing neurotransmitter secretion or release. Through epistasis analyses, the gene complementing the ric-8 mutant allele was predicted to elicit action upstream of or parallel to the gene encoding G protein α q in a diacylglycerol-dependent synaptic-vesicle-priming pathway (Miller et al. 2000). Miller and Rand also...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afshar K, Willard FS, Colombo K, Siderovski DP, Gonczy P. Cortical localization of the Gα protein GPA-16 requires RIC-8 function during C. elegans asymmetric cell division. Development. 2005;132(20):4449–59.

    Article  PubMed  CAS  Google Scholar 

  • Ali BR, Seabra MC. Targeting of Rab GTPases to cellular membranes. Biochem Soc Trans. 2005;33:652–6.

    Article  PubMed  CAS  Google Scholar 

  • Blumer JB, Kuriyama R, Gettys TW, Lanier SM. The G-protein regulatory (GPR) motif-containing Leu-Gly-Asn-enriched protein (LGN) and Giα3 influence cortical positioning of the mitotic spindle poles at metaphase in symmetrically dividing mammalian cells. Eur J Cell Biol. 2006;85(12):1233–40.

    Article  PubMed  CAS  Google Scholar 

  • Chisari M, Saini DK, Kalyanaraman V, Gautam N. Shuttling of G Protein subunits between the plasma membrane and intracellular membranes. J Biol Chem. 2007;282(33):24092–8.

    Article  PubMed  CAS  Google Scholar 

  • Cho H, Kehrl JH. Localization of Giα proteins in the centrosomes and at the midbody: implication for their role in cell division. J Cell Biol. 2007;178(2):245–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du Q, Macara IG. Mammalian pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell. 2004;119(4):503–16.

    Article  PubMed  CAS  Google Scholar 

  • Du Q, Taylor L, Compton DA, Macara IG. LGN blocks the ability of NuMA to bind and stabilize microtubules: a mechanism for mitotic spindle assembly regulation. Curr Biol. 2002;12(22):1928–33.

    Article  PubMed  CAS  Google Scholar 

  • Dupre DJ, Robitaille M, Richer M, Ethier N, Mamarbachi AM, Hebert TE. Dopamine receptor-interacting protein 78 acts as a molecular chaperone for Gγ subunits before assembly with Gβ. J Biol Chem. 2007;282(18):13703–15.

    Article  PubMed  CAS  Google Scholar 

  • Hampoelz B, Hoeller O, Bowman SK, Dunican D, Knoblich JA. Drosophila Ric-8 is essential for plasma-membrane localization of heterotrimeric G proteins. Nat Cell Biol. 2005;7(11):1099–105.

    Article  PubMed  CAS  Google Scholar 

  • Hess HA, Roper J-C, Grill SW, Koelle MR. RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in C. elegans. Cell. 2004;119(2):209–18.

    Article  PubMed  CAS  Google Scholar 

  • Kerr DS, Von Dannecker LEC, Davalos M, Michaloski JS, Malnic B. Ric-8B interacts with Gαolf and Gγ13 and colocalizes with Gαolf, Gβ1 and Gγ13 in the cilia of olfactory sensory neurons. Mol Cell Neurosci. 2008;38:341–8.

    Article  PubMed  CAS  Google Scholar 

  • Klattenhoff C, Montecino M, Soto X, Guzmen L, Romo X, de los Angeles Garcia M, et al. Human brain synembryn interacts with Gsα and Gqα and is translocated to the plasma membrane in response to isoproterenol and carbachol. J Cell Physiol. 2003;195(2):151–7.

    Article  PubMed  CAS  Google Scholar 

  • Lukov GL, Hu T, McLaughlin JN, Hamm HE, Willardson BM. Phosducin-like protein acts as a molecular chaperone for G protein βγ dimer assembly. EMBO J. 2005;24(11):1965–75. https://doi.org/10.1038/sj.emboj.7600673.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marrari Y, Crouthamel M, Irannejad R, Wedegaertner PB. Assembly and trafficking of heterotrimeric G proteins. Biochemistry. 2007;46(26):7665–77. https://doi.org/10.1021/bi700338m.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki F. Drosophila G-protein signaling: intricate roles for Ric-8? Nat Cell Biol. 2005;7(11):1047–9. https://doi.org/10.1038/ncb1105-1047.

    Article  PubMed  CAS  Google Scholar 

  • Miller KG, Rand JBA. role for RIC-8 (Synembryn) and GOA-1 (Goα) in regulating a subset of centrosome movements during early embryogenesis in Caenorhabditis elegans. Genetics. 2000;156(4):1649–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Miller KG, Alfonso A, Nguyen M, Crowell JA, Johnson CD, Rand JB. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc Natl Acad Sci. 1996;93(22):12593–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller KG, Emerson MD, McManus JR, Rand JB. RIC-8 (Synembryn): a novel conserved protein that is required for Gqα signaling in the C. elegans nervous system. Neuron. 2000;27:289–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagai Y, Nishimura A, Tago K, Mizuno N, Itoh H. Ric-8B stabilizes the alpha subunit of stimulatory G protein by inhibiting its ubiquitination. J Biol Chem. 2010;285(15):11114–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reynolds NK, Schade MA, Miller KG. Convergent, RIC-8-dependent Gα signaling pathways in the Caenorhabditis elegans synaptic signaling network. Genetics. 2005;169(2):651–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romo X, Pasten P, MartÌnez S, Soto X, Lara P, ARd A, et al. xRic-8 is a GEF for Gsα and participates in maintaining meiotic arrest in Xenopus laevis oocytes. J Cell Physiol. 2008;214(3):673–80.

    Article  PubMed  CAS  Google Scholar 

  • Schade MA, Reynolds NK, Dollins CM, Miller KG. Mutations that rescue the paralysis of Caenorhabditis elegans ric-8 (Synembryn) mutants activate the Gαs pathway and define a third major branch of the synaptic signaling network. Genetics. 2005;169(2):631–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siderovski DP, Willard FS. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci. 2005;1(2):51–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siller KH, Doe CQ. Spindle orientation during asymmetric cell division. Nat Cell Biol. 2009;11(4):365–74. https://doi.org/10.1038/ncb0409-365.

    Article  PubMed  CAS  Google Scholar 

  • Tall GG, Gilman AG. Resistance to inhibitors of cholinesterase 8A catalyzes release of Gαi-GTP and nuclear mitotic apparatus protein (NuMA) from NuMA/LGN/Gαi-GDP complexes. Proc Natl Acad Sci. 2005;102(46):16584–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tall GG, Krumins AM, Gilman AG. Mammalian Ric-8A (Synembryn) is a heterotrimeric Gα protein guanine nucleotide exchange factor. J Biol Chem. 2003;278(10):8356–62.

    Article  PubMed  CAS  Google Scholar 

  • Thomas CJ, Tall GG, Adhikari A, Sprang SR. RIC-8A catalyzes guanine nucleotide exchange on Gαi 1 bound to the GPR/GoLoco exchange inhibitor AGS3. J Biol Chem. 2008;2008:M802422200.

    Google Scholar 

  • Tsutsumi R, Fukata Y, Noritake J, Iwanaga T, Perez F, Fukata M. Identification of G protein α subunit-palmitoylating enzyme. Mol Cell Biol. 2009;29(2):435–47.

    Article  PubMed  CAS  Google Scholar 

  • Von Dannecker LEC, Mercadante AF, Malnic B. Ric-8B promotes functional expression of odorant receptors. PNAS. 2006;103(24):9310–4.

    Article  CAS  Google Scholar 

  • Wilkie TM, Kinch L. New roles for Gα and RGS proteins: communication continues despite pulling sisters apart. Curr Biol. 2005;15:R843–954.

    Article  PubMed  CAS  Google Scholar 

  • Woodard GE, Huang N-N, Cho H, Miki T, Tall GG, Kehrl JH. Ric-8A and Giα recruit LGN, NuMA, and Dynein to the cell cortex to help orient the mitotic spindle. Mol Cell Biol. 2010;30(14):3519–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu F, Kuo CT, Jan YN. Drosophila neuroblast asymmetric cell division: recent advances and implications for stem cell biology. Neuron. 2006;51(1):13–20.

    Article  PubMed  CAS  Google Scholar 

  • Zhuang H, Matsunami H. Synergism of accessory factors in functional expression of mammalian odorant receptors. J Biol Chem. 2007;282:15284–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory G. Tall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tall, G.G. (2018). Ric-8. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_171

Download citation

Publish with us

Policies and ethics