Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

ABCA Transporters

  • Esther E. Biswas-Fiss
  • Albtool Alturkestani
  • Jazzlyn Jones
  • Joscelyn Korth
  • Stephanie Affet
  • Malissa Ha
  • Subhasis Biswas
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_166
This is a preview of subscription content, log in to check access.

Notes

Summary

The ABCA subfamily form an intriguing group of transporters whose function relates to lipid homeostasis. Although in several instances, such as with the ABCA6-like subgroup, the exact cellular function and mechanism of action remain unknown, their important physiological role is underscored by the often severe diseases that result from mutations in their genes. Prospects for future research relate back to the degree in which each transporter is understood. For relatively well-characterized transporters such as ABCA1 and ABCA4, a significant amount is known about the prospective ligand and a well-established link between a given monogenic disorder and mutations in the transporter encoding gene exists. Genetic testing for ABCA1, ABCA4, ABCA3,ABCA7, and ABCA12 disease associated variants is available in laboratories in the United States and abroad. For these transporters current and future research aimed at understanding the genotype phenotype (biochemical as well as clinical) correlation is important, so that more accurate prognoses and specific therapies may be implemented. Ultimately, the development of transport assays which can analyze the actual transport event itself, for both mutant and wild type proteins, will need to be developed in order to determine the precise effect of a given mutation on transporter function. In the case of less well understood transporters, such as the ABCA6-like subgroup, fundamental research is required to determine the identity of the transport ligand and how this relates to human health and disease. Finally, defining the role of protein-protein interactions in ABCA proteins is necessary in order to determine the synergistic relationships between the other members of the ABCA and/or ABC protein family as well as to define a given ABCA proteome. Perhaps, the recent identification of ABCA transporters in plants may provide us with additional model systems. Undoubtedly, the roadmap of ABCA disease-associated variants provides scientists and clinicians with a wealth of clues to uncover the secrets of this important class of ABC transporters.

References

  1. Akao H, Polisecki E, Schaefer EJ, Trompet S, Robertson M, Ford I, et al. ABCA1 gene variation and heart disease risk reduction in the elderly during pravastatin treatment. Atherosclerosis. 2014;235(1):176–81. doi:10.1016/j.atherosclerosis.2014.04.030.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Albrecht C, Viturro E. The ABCA subfamily – gene and protein structures, functions and associated hereditary diseases. Pflugers Arch. 2007;453(5):581–9. doi:10.1007/s00424-006-0047-8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA, Bernstein PS, et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science. 1997;277(5333):1805–7.PubMedCrossRefGoogle Scholar
  4. Annilo, T., Shulenin, S., Chen, Z. Q., Arnould, I., Prades, C., Lemoine, C., … Rosier, M. (2002). Identification and characterization of a novel ABCA subfamily member, ABCA12, located in the lamellar ichthyosis region on 2q34. Cytogenet Genome Res, 98(2–3), 169–176. doi:69811Google Scholar
  5. Annilo T, Chen ZQ, Shulenin S, Dean M. Evolutionary analysis of a cluster of ATP-binding cassette (ABC) genes. Mamm Genome. 2003;14(1):7–20. doi:10.1007/s00335-002-2229-9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arai E, Sakamoto H, Ichikawa H, Totsuka H, Chiku S, Gotoh M, et al. Multilayer-omics analysis of renal cell carcinoma, including the whole exome, methylome and transcriptome. Int J Cancer. 2014;135(6):1330–42. doi:10.1002/ijc.28768.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Araujo TM, Seabra AD, Lima EM, Assumpcao PP, Montenegro RC, Demachki S, et al. Recurrent amplification of RTEL1 and ABCA13 and its synergistic effect associated with clinicopathological data of gastric adenocarcinoma. Mol Cytogenet. 2016;9:52. doi:10.1186/s13039-016-0260-x.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Baecklund F, Foo JN, Bracci P, Darabi H, Karlsson R, Hjalgrim H, et al. A comprehensive evaluation of the role of genetic variation in follicular lymphoma survival. BMC Med Genet. 2014;15:113. doi:10.1186/s12881-014-0113-6.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bamji-Mirza M, Li Y, Najem D, Liu QY, Walker D, Lue LF, et al. Genetic variations in ABCA7 can increase secreted levels of amyloid-beta40 and amyloid-beta42 peptides and ABCA7 transcription in cell culture models. J Alzheimers Dis. 2016;53(3):875–92. doi:10.3233/JAD-150965.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Barber RC. The genetics of Alzheimer’s disease. Scientifica (Cairo). 2012;2012:246210. doi:10.6064/2012/246210.CrossRefGoogle Scholar
  11. Beers MF, Hawkins A, Shuman H, Zhao M, Newitt JL, Maguire JA, et al. A novel conserved targeting motif found in ABCA transporters mediates trafficking to early post-Golgi compartments. J Lipid Res. 2011;52(8):1471–82. doi:10.1194/jlr.M013284.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Biswas-Fiss EE, Kurpad DS, Joshi K, Biswas SB. Interaction of extracellular domain 2 of the human retina-specific ATP-binding cassette transporter (ABCA4) with all-trans-retinal. J Biol Chem. 2010;285(25):19372–83. doi:10.1074/jbc.M110.112896.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Biswas-Fiss EE, Affet S, Ha M, Biswas SB. Retinoid binding properties of nucleotide binding domain 1 of the Stargardt disease-associated ATP binding cassette (ABC) transporter, ABCA4. J Biol Chem. 2012;287(53):44097–107. doi:10.1074/jbc.M112.409623.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bleasel JM, Hsiao JH, Halliday GM, Kim WS. Increased expression of ABCA8 in multiple system atrophy brain is associated with changes in pathogenic proteins. J Parasit Dis. 2013;3(3):331–9. doi:10.3233/JPD-130203.CrossRefGoogle Scholar
  15. Boehm-Cagan A, Bar R, Liraz O, Bielicki JK, Johansson JO, Michaelson DM. ABCA1 agonist reverses the apoE4-driven cognitive and brain pathologies. J Alzheimers Dis. 2016. doi:10.3233/JAD-160467.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Boyer NP, Higbee D, Currin MB, Blakeley LR, Chen C, Ablonczy Z, et al. Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal. J Biol Chem. 2012;287(26):22276–86. doi:10.1074/jbc.M111.329235.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bungert S, Molday LL, Molday RS. Membrane topology of the ATP binding cassette transporter ABCR and its relationship to ABC1 and related ABCA transporters: identification of N-linked glycosylation sites. J Biol Chem. 2001;276(26):23539–46. doi:10.1074/jbc.M101902200.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Carrasquillo MM, Belbin O, Hunter TA, Ma L, Bisceglio GD, Zou F, et al. Replication of EPHA1 and CD33 associations with late-onset Alzheimer’s disease: a multi-centre case-control study. Mol Neurodegener. 2011;6(1):54. doi:10.1186/1750-1326-6-54.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen P, Dai Y, Wu X, Wang Y, Sun S, Xiao J, et al. Mutations in the ABCA3 gene are associated with cataract-microcornea syndrome. Invest Ophthalmol Vis Sci. 2014;55(12):8031–43. doi:10.1167/iovs.14-14098.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chung SJ, Jung Y, Hong M, Kim MJ, You S, Kim YJ, et al. Alzheimer’s disease and Parkinson’s disease genome-wide association study top hits and risk of Parkinson’s disease in Korean population. Neurobiol Aging. 2013a;34(11):2695.e1–7. doi:10.1016/j.neurobiolaging.2013.05.022.CrossRefGoogle Scholar
  21. Chung SJ, Lee JH, Kim SY, You S, Kim MJ, Lee JY, Koh J. Association of GWAS top hits with late-onset Alzheimer disease in Korean population. Alzheimer Dis Assoc Disord. 2013b;27(3):250–7. doi:10.1097/WAD.0b013e31826d7281.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cui H, Zhang AJ, Chen M, Liu JJ. ABC transporter inhibitors in reversing multidrug resistance to chemotherapy. Curr Drug Targets. 2015;16(12):1356–71.PubMedCrossRefGoogle Scholar
  23. Cukier HN, Kunkle BW, Vardarajan BN, Rolati S, Hamilton-Nelson KL, Kohli MA, et al. ABCA7 frameshift deletion associated with Alzheimer disease in African Americans. Neurol Genet. 2016;2(3):e79. doi:10.1212/NXG.0000000000000079.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cuyvers E, De Roeck A, Van den Bossche T, Van Cauwenberghe C, Bettens K, Vermeulen S, et al. Mutations in ABCA7 in a Belgian cohort of Alzheimer’s disease patients: a targeted resequencing study. Lancet Neurol. 2015;14(8):814–22. doi:10.1016/S1474-4422(15)00133-7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Davis Jr W. The ATP-binding cassette transporter-2 (ABCA2) regulates esterification of plasma membrane cholesterol by modulation of sphingolipid metabolism. Biochim Biophys Acta. 2014;1841(1):168–79. doi:10.1016/j.bbalip.2013.10.019.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Davis Jr W. The ATP-binding cassette transporter-2 (ABCA2) overexpression modulates sphingosine levels and transcription of the Amyloid Precursor Protein (APP) gene. Curr Alzheimer Res. 2015;12(9):847–59.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11(7):1156–66.PubMedCrossRefGoogle Scholar
  28. Del-Aguila JL, Fernandez MV, Jimenez J, Black K, Ma S, Deming Y, et al. Role of ABCA7 loss-of-function variant in Alzheimer’s disease: a replication study in European-Americans. Alzheimers Res Ther. 2015;7(1):73. doi:10.1186/s13195-015-0154-x.CrossRefPubMedPubMedCentralGoogle Scholar
  29. DeStefano GM, Kurban M, Anyane-Yeboa K, Dall’Armi C, Di Paolo G, Feenstra H, et al. Mutations in the cholesterol transporter gene ABCA5 are associated with excessive hair overgrowth. PLoS Genet. 2014;10(5):e1004333. doi:10.1371/journal.pgen.1004333.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Elsnerova K, Mohelnikova-Duchonova B, Cerovska E, Ehrlichova M, Gut I, Rob L, et al. Gene expression of membrane transporters: importance for prognosis and progression of ovarian carcinoma. Oncol Rep. 2016;35(4):2159–70. doi:10.3892/or.2016.4599.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fasano T, Bocchi L, Pisciotta L, Bertolini S, Calandra S, et al. Denaturing high-performance liquid chromatography in the detection of ABCA1 gene mutations in familial HDL deficiency. J Lipid Res. 2005;46:817–22.doi:10.1194/jlr.D400038-JLR200.CrossRefPubMedGoogle Scholar
  32. Fitzgerald ML, Okuhira K, Short 3rd GF, Manning JJ, Bell SA, Freeman MW. ATP-binding cassette transporter A1 contains a novel C-terminal VFVNFA motif that is required for its cholesterol efflux and ApoA-I binding activities. J Biol Chem. 2004;279(46):48477–85. doi:10.1074/jbc.M409848200.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fitzgerald ML, Mujawar Z, Tamehiro N. ABC transporters, atherosclerosis and inflammation. Atherosclerosis. 2010;211(2):361–70. doi:10.1016/j.atherosclerosis.2010.01.011.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fu Y, Hsiao JH, Paxinos G, Halliday GM, Kim WS. ABCA5 regulates amyloid-beta peptide production and is associated with Alzheimer’s disease neuropathology. J Alzheimers Dis. 2015;43(3):857–69. doi:10.3233/JAD-141320.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Fu Y, Hsiao JH, Paxinos G, Halliday GM, Kim WS. ABCA7 mediates phagocytic clearance of amyloid-beta in the brain. J Alzheimers Dis. 2016;54(2):569–84. doi:10.3233/JAD-160456.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gai J, Ji M, Shi C, Li W, Chen S, Wang Y, Li H. FoxO regulates expression of ABCA6, an intracellular ATP-binding-cassette transporter responsive to cholesterol. Int J Biochem Cell Biol. 2013;45(11):2651–9. doi:10.1016/j.biocel.2013.08.020.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gao Y, Li W, Liu X, Gao F, Zhao X. Reversing effect and mechanism of soluble resistance-related calcium-binding protein on multidrug resistance in human lung cancer A549/DDP cells. Mol Med Rep. 2015;11(3):2118–24. doi:10.3892/mmr.2014.2936.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hafler BP. Clinical progress in inherited retinal degenerations: gene therapy clinical trials and advances in genetic sequencing. Retina. 2016. doi:10.1097/IAE.0000000000001341.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hedditch EL, Gao B, Russell AJ, Lu Y, Emmanuel C, Beesley J, et al. ABCA transporter gene expression and poor outcome in epithelial ovarian cancer. J Natl Cancer Inst. 2014;106(7). doi:10.1093/jnci/dju149.Google Scholar
  40. Higgins CF. ABC transporters: physiology, structure and mechanism – an overview. Res Microbiol. 2001;152(3–4):205–10.PubMedCrossRefGoogle Scholar
  41. Hohman TJ, Cooke-Bailey JN, Reitz C, Jun G, Naj A, Beecham GW, et al. Global and local ancestry in African-Americans: implications for Alzheimer’s disease risk. Alzheimers Dement. 2016;12(3):233–43. doi:10.1016/j.jalz.2015.02.012.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Iatan I, Bailey D, Ruel I, Hafiane A, Campbell S, Krimbou L, Genest J. Membrane microdomains modulate ligand binding activity of oligomeric ABCA1 and apoA-I-mediated lipid removal: molecular evidence that ApoA-I interaction with ABCA1 activates the phosphatidylcholine biosynthesis pathway. J Lipid Res. 2011. doi:10.1194/jlr.M016196.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ingram WJ, Crowther LM, Little EB, Freeman R, Harliwong I, Veleva D, et al. ABC transporter activity linked to radiation resistance and molecular subtype in pediatric medulloblastoma. Exp Hematol Oncol. 2013;2(1):26. doi:10.1186/2162-3619-2-26.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Januchowski R, Zawierucha P, Andrzejewska M, Rucinski M, Zabel M. Microarray-based detection and expression analysis of ABC and SLC transporters in drug-resistant ovarian cancer cell lines. Biomed Pharmacother. 2013;67(3):240–5. doi:10.1016/j.biopha.2012.11.011.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Januchowski R, Zawierucha P, Rucinski M, Andrzejewska M, Wojtowicz K, Nowicki M, Zabel M. Drug transporter expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line. Biomed Pharmacother. 2014;68(4):447–53. doi:10.1016/j.biopha.2014.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kaminski WE, Piehler A, Wenzel JJ. ABC A-subfamily transporters: structure, function and disease. Biochim Biophys Acta. 2006;1762(5):510–24. doi:10.1016/j.bbadis.2006.01.011.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Karatas OF, Guzel E, Duz MB, Ittmann M, Ozen M. The role of ATP-binding cassette transporter genes in the progression of prostate cancer. Prostate. 2016;76(5):434–44. doi:10.1002/pros.23137.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kim WS, Halliday GM. Changes in sphingomyelin level affect alpha-synuclein and ABCA5 expression. J Parasit Dis. 2012;2(1):41–6. doi:10.3233/JPD-2012-11059.CrossRefGoogle Scholar
  49. Kim WS, Weickert CS, Garner B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem. 2008;104(5):1145–66. doi:10.1111/j.1471-4159.2007.05099.x.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kim WS, Hsiao JH, Bhatia S, Glaros EN, Don AS, Tsuruoka S, et al. ABCA8 stimulates sphingomyelin production in oligodendrocytes. Biochem J. 2013;452(3):401–10. doi:10.1042/BJ20121764.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Knight HM, Pickard BS, Maclean A, Malloy MP, Soares DC, McRae AF, et al. A cytogenetic abnormality and rare coding variants identify ABCA13 as a candidate gene in schizophrenia, bipolar disorder, and depression. Am J Hum Genet. 2009;85(6):833–46. doi:10.1016/j.ajhg.2009.11.003.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Koochek A, Choate KA, Milstone LM. Harlequin ichthyosis: neonatal management and identification of a new ABCA12 mutation. Pediatr Dermatol. 2014;31(2):e63–4. doi:10.1111/pde.12263.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lane TS, Rempe CS, Davitt J, Staton ME, Peng Y, Soltis DE, et al. Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology. BMC Biotechnol. 2016;16(1):47. doi:10.1186/s12896-016-0277-6.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Liao YC, Lee WJ, Hwang JP, Wang YF, Tsai CF, Wang PN, et al. ABCA7 gene and the risk of Alzheimer’s disease in Han Chinese in Taiwan. Neurobiol Aging. 2014;35(10):2423.e7–13. doi:10.1016/j.neurobiolaging.2014.05.009.CrossRefGoogle Scholar
  55. Liu X, Gao Y, Zhao B, Li X, Lu Y, Zhang J, et al. Discovery of microarray-identified genes associated with ovarian cancer progression. Int J Oncol. 2015;46(6):2467–78. doi:10.3892/ijo.2015.2971.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Logue MW, Schu M, Vardarajan BN, Buros J, Green RC, Go RC, et al. A comprehensive genetic association study of Alzheimer disease in African Americans. Arch Neurol. 2011;68(12):1569–79. doi:10.1001/archneurol.2011.646.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ma J, Lan X, Gao N, Wang J, Hao D, Yao J, et al. A genetic association study between common variants in the ABCA13 gene and schizophrenia in a Han Chinese population. Psychiatry Res. 2013;209(3):748–9. doi:10.1016/j.psychres.2013.07.013.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mace S, Cousin E, Ricard S, Genin E, Spanakis E, Lafargue-Soubigou C, et al. ABCA2 is a strong genetic risk factor for early-onset Alzheimer’s disease. Neurobiol Dis. 2005;18(1):119–25. doi:10.1016/j.nbd.2004.09.011.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mack JT, Beljanski V, Tew KD, Townsend DM. The ATP-binding cassette transporter ABCA2 as a mediator of intracellular trafficking. Biomed Pharmacother. 2006;60(9):587–92. doi:10.1016/j.biopha.2006.07.090.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Mack JT, Brown CB, Garrett TE, Uys JD, Townsend DM, Tew KD. Ablation of the ATP-binding cassette transporter, Abca2 modifies response to estrogen-based therapies. Biomed Pharmacother. 2012;66(6):403–8. doi:10.1016/j.biopha.2012.06.007.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mata NL, Tzekov RT, Liu X, Weng J, Birch DG, Travis GH. Delayed dark-adaptation and lipofuscin accumulation in abcr+/− mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2001;42(8):1685–90.PubMedPubMedCentralGoogle Scholar
  62. Matsuzaki Y, Besnard V, Clark JC, Xu Y, Wert SE, Ikegami M, Whitsett JA. STAT3 regulates ABCA3 expression and influences lamellar body formation in alveolar type II cells. Am J Respir Cell Mol Biol. 2008;38(5):551–8. doi:10.1165/rcmb.2007-0311OC.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Michaki V, Guix FX, Vennekens K, Munck S, Dingwall C, Davis JB, et al. Down-regulation of the ATP-binding cassette transporter 2 (Abca2) reduces amyloid-beta production by altering Nicastrin maturation and intracellular localization. J Biol Chem. 2012;287(2):1100–11. doi:10.1074/jbc.M111.288258.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Molday RS, Beharry S, Ahn J, Zhong M. Binding of N-retinylidene-PE to ABCA4 and a model for its transport across membranes. Adv Exp Med Biol. 2006;572:465–70.PubMedCrossRefGoogle Scholar
  65. Nordestgaard LT, Tybjaerg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. Loss-of-function mutation in ABCA1 and risk of Alzheimer’s disease and cerebrovascular disease. Alzheimers Dement. 2015;11(12):1430–8. doi:10.1016/j.jalz.2015.04.006.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Nuytemans K, Maldonado L, Ali A, John-Williams K, Beecham GW, Martin E, et al. Overlap between Parkinson disease and Alzheimer disease in ABCA7 functional variants. Neurol Genet. 2016;2(1):e44. doi:10.1212/NXG.0000000000000044.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Nymoen DA, Holth A, Hetland Falkenthal TE, Trope CG, Davidson B. CIAPIN1 and ABCA13 are markers of poor survival in metastatic ovarian serous carcinoma. Mol Cancer. 2015;14:44. doi:10.1186/s12943-015-0317-1.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ohtsuki S, Kamoi M, Watanabe Y, Suzuki H, Hori S, Terasaki T. Correlation of induction of ATP binding cassette transporter A5 (ABCA5) and ABCB1 mRNAs with differentiation state of human colon tumor. Biol Pharm Bull. 2007;30(6):1144–6.PubMedCrossRefGoogle Scholar
  69. Ordovas JM. ABC1: the gene for Tangier disease and beyond. Nutr Rev. 2000;58(3 Pt 1):76–9.PubMedPubMedCentralGoogle Scholar
  70. Peca D, Cutrera R, Masotti A, Boldrini R, Danhaive O. ABCA3, a key player in neonatal respiratory transition and genetic disorders of the surfactant system. Biochem Soc Trans. 2015;43(5):913–9. doi:10.1042/BST20150100.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Peelman F, Labeur C, Vanloo B, Roosbeek S, Devaud C, Duverger N, et al. Characterization of the ABCA transporter subfamily: identification of prokaryotic and eukaryotic members, phylogeny and topology. J Mol Biol. 2003;325(2):259–74.PubMedCrossRefGoogle Scholar
  72. Pickard BS, Van Den Bossche MJ, Malloy MP, Johnstone M, Lenaerts AS, Nordin A, et al. Multiplex amplicon quantification screening the ABCA13 gene for copy number variation in schizophrenia and bipolar disorder. Psychiatr Genet. 2012;22(5):269–70. doi:10.1097/YPG.0b013e32835185b3.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Pollock NL, Callaghan R. The lipid translocase, ABCA4: seeing is believing. FEBS J. 2011;278(18):3204–14. doi:10.1111/j.1742-4658.2011.08169.x.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Prades C, Arnould I, Annilo T, Shulenin S, Chen ZQ, Orosco L, et al. The human ATP binding cassette gene ABCA13, located on chromosome 7p12.3, encodes a 5058 amino acid protein with an extracellular domain encoded in part by a 4.8-kb conserved exon. Cytogenet Genome Res. 2002;98(2–3):160–8. doi:10.1159/000069852.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Rahgozar S, Moafi A, Abedi M, Entezar EGM, Moshtaghian J, Ghaedi K, et al. mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2. Cancer Biol Ther. 2014;15(1):35–41. doi:10.4161/cbt.26603.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Rickels MR, Goeser ES, Fuller C, Lord C, Bowler AM, Doliba NM, et al. Loss-of-function mutations in ABCA1 and enhanced beta-cell secretory capacity in young adults. Diabetes. 2015;64(1):193–9. doi:10.2337/db14-0436.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Saini V, Hose CD, Monks A, Nagashima K, Han B, Newton DL, et al. Identification of CBX3 and ABCA5 as putative biomarkers for tumor stem cells in osteosarcoma. PLoS One. 2012;7(8):e41401. doi:10.1371/journal.pone.0041401.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Schulz V, Hendig D, Henjakovic M, Szliska C, Kleesiek K, Gotting C. Mutational analysis of the ABCC6 gene and the proximal ABCC6 gene promoter in German patients with pseudoxanthoma elasticum (PXE). Hum Mutat. 2006;27(8):831. doi:10.1002/humu.9444.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Shi H, Belbin O, Medway C, Brown K, Kalsheker N, Carrasquillo M, et al. Genetic variants influencing human aging from late-onset Alzheimer’s disease (LOAD) genome-wide association studies (GWAS). Neurobiol Aging. 2012;33(8):1849.5–18. doi:10.1016/j.neurobiolaging.2012.02.014.CrossRefGoogle Scholar
  80. Steinberg S, Stefansson H, Jonsson T, Johannsdottir H, Ingason A, Helgason H, et al. Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nat Genet. 2015;47(5):445–7. doi:10.1038/ng.3246.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Stenirri S, Battistella S, Fermo I, Manitto MP, Martina E, Brancato R, et al. De novo deletion removes a conserved motif in the C-terminus of ABCA4 and results in cone-rod dystrophy. Clin Chem Lab Med. 2006;44(5):533–7. doi:10.1515/CCLM.2006.116.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Takahashi K, Kimura Y, Nagata K, Yamamoto A, Matsuo M, Ueda K. ABC proteins: key molecules for lipid homeostasis. Med Mol Morphol. 2005;38(1):2–12. doi:10.1007/s00795-004-0278-8.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tan L, Yu JT, Zhang W, Wu ZC, Zhang Q, Liu QY, et al. Association of GWAS-linked loci with late-onset Alzheimer’s disease in a northern Han Chinese population. Alzheimers Dement. 2013;9(5):546–53. doi:10.1016/j.jalz.2012.08.007.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Tan WJ, Cima I, Choudhury Y, Wei X, Lim JC, Thike AA, et al. A five-gene reverse transcription-PCR assay for pre-operative classification of breast fibroepithelial lesions. Breast Cancer Res. 2016;18(1):31. doi:10.1186/s13058-016-0692-6.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tanaka AR, Abe-Dohmae S, Ohnishi T, Aoki R, Morinaga G, Okuhira K, et al. Effects of mutations of ABCA1 in the first extracellular domain on subcellular trafficking and ATP binding/hydrolysis. J Biol Chem. 2003;278(10):8815–9. doi:10.1074/jbc.M206885200.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Tanaka N, Abe-Dohmae S, Iwamoto N, Yokoyama S, et al. Roles of ATP-binding cassette transporter A7 in cholesterol homeostasis and host defense system. J Atheroscler Thromb. 2011;18:274–81. doi:10.5551/jat.6726CrossRefPubMedGoogle Scholar
  87. Theodoulou FL, Kerr ID. ABC transporter research: going strong 40 years on. Biochem Soc Trans. 2015;43(5):1033–40. doi:10.1042/BST20150139.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Tsybovsky Y, Molday RS, Palczewski K. The ATP-binding cassette transporter ABCA4: structural and functional properties and role in retinal disease. Adv Exp Med Biol. 2010;703:105–25. doi:10.1007/978-1-4419-5635-4_8.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Turcu S, Ashton E, Jenkins L, Gupta A, Mok Q. Genetic testing in children with surfactant dysfunction. Arch Dis Child. 2013;98(7):490–5. doi:10.1136/archdischild-2012-303166.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Van den Bossche T, Sleegers K, Cuyvers E, Engelborghs S, Sieben A, De Roeck A, et al. Phenotypic characteristics of Alzheimer patients carrying an ABCA7 mutation. Neurology. 2016;86(23):2126–33. doi:10.1212/WNL.0000000000002628.CrossRefPubMedPubMedCentralGoogle Scholar
  91. van der Deen M, de Vries EG, Timens W, Scheper RJ, Timmer-Bosscha H, Postma DS. ATP-binding cassette (ABC) transporters in normal and pathological lung. Respir Res. 2005;6:59. doi:10.1186/1465-9921-6-59.CrossRefPubMedPubMedCentralGoogle Scholar
  92. van Leeuwen EM, Karssen LC, Deelen J, Isaacs A, Medina-Gomez C, Mbarek H, et al. Genome of The Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels. Nat Commun. 2015;6:6065. doi:10.1038/ncomms7065.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics. 2009;3(3):281–90.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wakino S, Itoh H. Anti-atherosclerotic effects by PPARgamma and its ligands through the activation of reverse cholesterol transport system. Nihon Rinsho. 2010;68(2):217–23.PubMedPubMedCentralGoogle Scholar
  95. Wang N, Lan D, Gerbod-Giannone M, Linsel-Nitschke P, Jehle AW, Chen W, et al. ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates cellular phospholipid but not cholesterol efflux. J Biol Chem. 2003;278(44):42906–12. doi:10.1074/jbc.M307831200.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wenzel JJ, Piehler A, Kaminski WE. ABC A-subclass proteins: gatekeepers of cellular phospho- and sphingolipid transport. Front Biosci. 2007;12:3177–93.PubMedCrossRefGoogle Scholar
  97. Wert SE, Whitsett JA, Nogee LM. Genetic disorders of surfactant dysfunction. Pediatr Dev Pathol. 2009;12(4):253–74. doi:10.2350/09-01-0586.1.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Wong JH, Halliday GM, Kim WS. Exploring myelin dysfunction in multiple system atrophy. Exp Neurobiol. 2014;23(4):337–44. doi:10.5607/en.2014.23.4.337.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Xie N, Chen DH, Lin YN, Wu SZ, Gu YY, Zeng QS, et al. Pulmonary surfactant protein adenosine triphosphate-binding-cassette-A3 gene composite mutations in infant congenital interstitial lung disease: report of a case and review of literature. Zhonghua Er Ke Za Zhi. 2016a;54(10):761–6. doi:10.3760/cma.j.issn.0578-1310.2016.10.010.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Xie H, Xie Y, Peng R, Li L, Zhu Y, Guo J. Harlequin ichthyosis: a novel compound mutation of ABCA12 with prenatal diagnosis. Clin Exp Dermatol. 2016b;41(6):636–9. doi:10.1111/ced.12861.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Yassine HN, Feng Q, Chiang J, Petrosspour LM, Fonteh AN, Chui HC, Harrington MG. ABCA1-mediated cholesterol efflux capacity to cerebrospinal fluid is reduced in patients with mild cognitive impairment and Alzheimer’s disease. J Am Heart Assoc. 2016;5(2). doi:10.1161/JAHA.115.002886.Google Scholar
  102. Yu Y, Reynolds R, Fagerness J, Rosner B, Daly MJ, Seddon JM. Association of variants in the LIPC and ABCA1 genes with intermediate and large drusen and advanced age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011;52(7):4663–70. doi:10.1167/iovs.10-7070.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Yu L, Chibnik LB, Srivastava GP, Pochet N, Yang J, Xu J, et al. Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA Neurol. 2015;72(1):15–24. doi:10.1001/jamaneurol.2014.3049.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Zhang L, Ferreyros M, Feng W, Hupe M, Crumrine DA, Chen J, et al. Defects in stratum corneum desquamation are the predominant effect of impaired ABCA12 function in a novel mouse model of harlequin ichthyosis. PLoS One. 2016;11(8):e0161465. doi:10.1371/journal.pone.0161465.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Zhao QF, Yu JT, Tan MS, Tan L. ABCA7 in Alzheimer’s disease. Mol Neurobiol. 2015;51(3):1008–16. doi:10.1007/s12035-014-8759-9.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Zhong M, Molday LL, Molday RS. Role of the C terminus of the photoreceptor ABCA4 transporter in protein folding, function, and retinal degenerative diseases. J Biol Chem. 2009;284(6):3640–9. doi:10.1074/jbc.M806580200.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Esther E. Biswas-Fiss
    • 1
    • 2
  • Albtool Alturkestani
    • 1
  • Jazzlyn Jones
    • 1
  • Joscelyn Korth
    • 1
  • Stephanie Affet
    • 3
  • Malissa Ha
    • 3
  • Subhasis Biswas
    • 4
  1. 1.Department of Medical Laboratory Sciences, College of Health SciencesUniversity of DelawareNewarkUSA
  2. 2.Department of Molecular BiologyRowan University School of Osteopathic MedicineStratfordUSA
  3. 3.Department of Bioscience Technologies, Program in Biotechnology, JSHPThomas Jefferson UniversityPhiladelphiaUSA
  4. 4.Department of Molecular BiologyRowan UniversityStratfordUSA