Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Eps8 (Epidermal Growth Factor Receptor Pathway Substrate 8)

  • Francesca Milanesi
  • Niels Volkmann
  • Giorgio ScitaEmail author
  • Dorit Hanein
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_165


Historical Background

Eps8 (EGFR pathway substrate #8) is an actin-binding and signaling molecule with a molecular weight of 97KDa encoded by a gene comprising 21 exons located on the human chromosome 12p12. It was originally identified through an expression cloning approach designed to isolate intracellular substrates for the tyrosine kinase of the Epidermal Growth Factor Receptor (EGFR) (Fazioli et al. 1993). Eps8 is efficiently phosphorylated on tyrosine residues by a variety of both receptor and non-receptor tyrosine kinases (Fazioli et al. 1993). Following stimulation with neurotrophic factor BDNF, which critically controls growth and differentiation processes in the brain during development, through the activation of Trk tyrosine kinase receptors, Eps8 can also be phosphorylated, in a MAPK-dependent manner, on serine and threonine residues. Notably, while the...

This is a preview of subscription content, log in to check access.



This study was supported by the NIH Cell Migration Consortium grant U54 GM064346 from the National Institute of General Medical Sciences (NIGMS) to DH and NV; from the Associazione Italiana per la Ricerca sul Cancro (AIRC), the Italian Ministries of Education-University-Research (MIUR-PRIN) and of Health, AICR (International Association For Cancer Research – AICR), and from IFOM Foundation to GS; FM is supported by a fellowship from Fondazione Italiana Ricerca sul Cancro (FIRC).


  1. Aitio O, Hellman M, Kesti T, Kleino I, Samuilova O, Paakkonen K, et al. Structural basis of PxxDY motif recognition in SH3 binding. J Mol Biol. 2008;382(1):167–78.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bashir M, Kirmani D, Bhat HF, Baba RA, Hamza R, Naqash S, et al. P66shc and its downstream Eps8 and Rac1 proteins are upregulated in esophageal cancers. Cell Commun Signal. 2010;8:13.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Chen YJ, Shen MR, Maa MC, Leu TH. Eps8 decreases chemosensitivity and affects survival of cervical cancer patients. Mol Cancer Ther. 2008;7(6):1376–85.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Croce A, Cassata G, Disanza A, Gagliani MC, Tacchetti C, Malabarba MG, et al. A novel actin barbed-end-capping activity in EPS-8 regulates apical morphogenesis in intestinal cells of Caenorhabditis elegans. Nat Cell Biol. 2004;6(12):1173–9.CrossRefPubMedGoogle Scholar
  5. Di Fiore PP, Scita G. Eps8 in the midst of GTPases. Int J Biochem Cell Biol. 2002;34(10):1178–83.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Disanza A, Carlier MF, Stradal TE, Didry D, Frittoli E, Confalonieri S, et al. Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat Cell Biol. 2004;6(12):1180–8.CrossRefPubMedGoogle Scholar
  7. Disanza A, Mantoani S, Hertzog M, Gerboth S, Frittoli E, Steffen A, et al. Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat Cell Biol. 2006;8(12):1337–47.CrossRefPubMedGoogle Scholar
  8. Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT, et al. Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J. 1993;12(10):3799–808.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Forman-Kay JD, Pawson T. Diversity in protein recognition by PTB domains. Curr Opin Struct Biol. 1999;9(6):690–5.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Hertzog M, Milanesi F, Hazelwood L, Disanza A, Liu H, Perlade E, et al. Molecular basis for the dual function of Eps8 on actin dynamics: bundling and capping. PLoS Biol. 2010;8(6):e1000387.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Kishan KV, Scita G, Wong WT, Di Fiore PP, Newcomer ME. The SH3 domain of Eps8 exists as a novel intertwined dimer. Nat Struct Biol. 1997;4(9):739–43.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Kishan KV, Newcomer ME, Rhodes TH, Guilliot SD. Effect of pH and salt bridges on structural assembly: molecular structures of the monomer and intertwined dimer of the Eps8 SH3 domain. Protein Sci. 2001;10(5):1046–55.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Lanzetti L, Rybin V, Malabarba MG, Christoforidis S, Scita G, Zerial M, et al. The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature. 2000;408(6810):374–7.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Lanzetti L, Palamidessi A, Areces L, Scita G, Di Fiore PP. Rab5 is a signalling GTPase involved in actin remodelling by receptor tyrosine kinases. Nature. 2004;429(6989):309–14.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Maa MC, Hsieh CY, Leu TH. Overexpression of p97Eps8 leads to cellular transformation: implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene. 2001;20(1):106–12.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Maa MC, Lee JC, Chen YJ, Chen YJ, Lee YC, Wang ST, et al. Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. J Biol Chem. 2007;282(27):19399–409.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Manor U, Disanza A, Grati M, DeAndrade L, Lin H, Di Fiore P, et al. Regulation of stereocilia length by myosin XVa and whirlin depends on the actin regulatory protein Eps8. Curr Biol. 2011;21(2):167–72.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Menna E, Disanza A, Cagnoli C, Schenk U, Gelsomino G, Frittoli E, et al. Eps8 regulates axonal filopodia in hippocampal neurons in response to brain-derived neurotrophic factor (BDNF). PLoS Biol. 2009;7(6):e1000138.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Mongiovi AM, Romano PR, Panni S, Mendoza M, Wong WT, Musacchio A, et al. A novel peptide-SH3 interaction. EMBO J. 1999;18(19):5300–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Offenhauser N, Borgonovo A, Disanza A, Romano P, Ponzanelli I, Iannolo G, et al. The eps8 family of proteins links growth factor stimulation to actin reorganization generating functional redundancy in the Ras/Rac pathway. Mol Biol Cell. 2004;15(1):91–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Offenhauser N, Castelletti D, Mapelli L, Soppo BE, Regondi MC, Rossi P, et al. Increased ethanol resistance and consumption in Eps8 knockout mice correlates with altered actin dynamics. Cell. 2006;127(1):213–26.CrossRefPubMedGoogle Scholar
  22. Scita G, Confalonieri S, Lappalainen P, Suetsugu S. IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol. 2008;18(2):52–60.CrossRefPubMedGoogle Scholar
  23. Slupsky CM, Gentile LN, Donaldson LW, Mackereth CD, Seidel JJ, Graves BJ, et al. Structure of the Ets-1 pointed domain and mitogen-activated protein kinase phosphorylation site. Proc Natl Acad Sci USA. 1998;95(21):12129–34.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Smith MJ, Hardy WR, Murphy JM, Jones N, Pawson T. Screening for PTB domain binding partners and ligand specificity using proteome-derived NPXY peptide arrays. Mol Cell Biol. 2006;26(22):8461–74.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Stetak A, Hoier EF, Croce A, Cassata G, Di Fiore PP, Hajnal A. Cell fate-specific regulation of EGF receptor trafficking during Caenorhabditis elegans vulval development. EMBO J. 2006;25(11):2347–57.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Tocchetti A, Soppo CB, Zani F, Bianchi F, Gagliani MC, Pozzi B, et al. Loss of the actin remodeler Eps8 causes intestinal defects and improved metabolic status in mice. PLoS One. 2010;5(3):e9468.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Wang H, Patel V, Miyazaki H, Gutkind JS, Yeudall WA. Role for EPS8 in squamous carcinogenesis. Carcinogenesis. 2009;30(1):165–74.CrossRefPubMedGoogle Scholar
  28. Wang H, Teh MT, Ji Y, Patel V, Firouzabadian S, Patel AA, et al. EPS8 upregulates FOXM1 expression, enhancing cell growth and motility. Carcinogenesis. 2010;31(6):1132–41.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Welsch T, Endlich K, Giese T, Buchler MW, Schmidt J. Eps8 is increased in pancreatic cancer and required for dynamic actin-based cell protrusions and intercellular cytoskeletal organization. Cancer Lett. 2007;255(2):205–18.CrossRefPubMedGoogle Scholar
  30. Xu M, Shorts-Cary L, Knox AJ, Kleinsmidt-Demasters B, Lillehei K, Wierman ME. Epidermal growth factor receptor pathway substrate 8 (Eps8) is overexpressed in human pituitary tumors: role in proliferation and survival. Endocrinology. 2008. doi:10.1210/en.2008-1265.CrossRefPubMedGoogle Scholar
  31. Yap LF, Jenei V, Robinson CM, Moutasim K, Benn TM, Threadgold SP, et al. Upregulation of Eps8 in oral squamous cell carcinoma promotes cell migration and invasion through integrin-dependent Rac1 activation. Oncogene. 2009;28(27):2524–34.CrossRefPubMedGoogle Scholar
  32. Zhang W, Wang L, Liu Y, Xu J, Zhu G, Cang H, et al. Structure of human lanthionine synthetase C-like protein 1 and its interaction with Eps8 and glutathione. Genes Dev. 2009;23(12):1387–92.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Francesca Milanesi
    • 1
  • Niels Volkmann
    • 2
  • Giorgio Scita
    • 1
    • 3
    Email author
  • Dorit Hanein
    • 2
  1. 1.IFOMMilanItaly
  2. 2.Bioinformatics and Systems Biology ProgramSanford-Burnham Medical Research InstituteLa JollaUSA
  3. 3.Dipartimento di Medicina, Chirurgia ed OdontoiatriaUniversita’ degli Studi di MilanoMilanItaly