Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Voltage-Gated Calcium Channels: Structure and Function (CACNA)

  • Thomas L. PalloneEmail author
  • Sandeep KhuranaEmail author
  • Chunhua CaoEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_145


Historical Background

Voltage-gated calcium channels (CaV) are a family of complex proteins that conduct Ca 2+ into the cell cytoplasm through a large pore-forming α 1 subunit of 190–250 kDa. They are divided into three major families CaV1.x, CaV2.x, and CaV3.x based on sequence homology of the α 1 subunit. In turn, each subfamily is comprised of four (CaV1.1–CaV1.4) or three (CaV2.1–2.3; CaV3.1–3.3) members derived from separate genes (Catterall et al. 2005). The α 1 subunits are variably associated with β, α 2δ, and γ accessory proteins that modulate expression, targeting, voltage dependence, and kinetic characteristics (Fig. 1a) (Catterall et al. 2005; Buraei and Yang 2010). Moreover, splice variants of the α 1 subunit can account for tissue-specific behavior. Alternate classification schemes exist. Table 1shows the early nomenclature; L-, P/Q-, N-, R-, and T-type, and its relationship to more modern schemes based on...
This is a preview of subscription content, log in to check access.


  1. Baig SM, Koschak A, Lieb A, Gebhart M, Dafinger C, Nurnberg G, et al. Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci. 2011;14(1):77–84.CrossRefPubMedGoogle Scholar
  2. Buraei Z, Yang J. The β subunit of voltage-gated Ca2+ channels. Physiol Rev. 2010;90(4):1461–506.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Cannon SC. Voltage-sensor mutations in channelopathies of skeletal muscle. J Physiol. 2010;588(Pt 11):1887–95.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57(4):411–25.CrossRefPubMedGoogle Scholar
  5. Chen CC, Lamping KG, Nuno DW, Barresi R, Prouty SJ, Lavoie JL, et al. Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science. 2003;302(5649):1416–8.CrossRefPubMedGoogle Scholar
  6. Huc S, Monteil A, Bidaud I, Barbara G, Chemin J, Lory P. Regulation of T-type calcium channels: signaling pathways and functional implications. Biochim Biophys Acta. 2009;1793(6):947–52.CrossRefPubMedGoogle Scholar
  7. Hulme JT, Yarov-Yarovoy V, Lin TW, Scheuer T, Catterall WA. Autoinhibitory control of the CaV1.2 channel by its proteolytically processed distal C-terminal domain. J Physiol. 2006;576(Pt 1):87–102.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Khosravani H, Zamponi GW. Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev. 2006;86(3):941–66.CrossRefPubMedGoogle Scholar
  9. Kim C, Jun K, Lee T, Kim SS, McEnery MW, Chin H, et al. Altered nociceptive response in mice deficient in the alpha(1B) subunit of the voltage-dependent calcium channel. Mol Cell Neurosci. 2001;18(2):235–45.CrossRefPubMedGoogle Scholar
  10. Kochegarov AA. Pharmacological modulators of voltage-gated calcium channels and their therapeutical application. Cell Calcium. 2003;33(3):145–62.CrossRefPubMedGoogle Scholar
  11. Liang H, DeMaria CD, Erickson MG, Mori MX, Alseikhan BA, Yue DT. Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron. 2003;39(6):951–60.CrossRefPubMedGoogle Scholar
  12. Liao P, Soong TW. CaV1.2 channelopathies: from arrhythmias to autism, bipolar disorder, and immunodeficiency. Pflugers Arch. 2010;460(2):353–9.CrossRefPubMedGoogle Scholar
  13. Minor Jr DL, Findeisen F. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin). 2010;4(6):459–74.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Nakagawasai O, Onogi H, Mitazaki S, Sato A, Watanabe K, Saito H, et al. Behavioral and neurochemical characterization of mice deficient in the N-type Ca2+ channel alpha1B subunit. Behav Brain Res. 2010;208(1):224–30.CrossRefPubMedGoogle Scholar
  15. Perez-Reyes E. Molecular characterization of T-type calcium channels. Cell Calcium. 2006;40(2):89–96.CrossRefPubMedGoogle Scholar
  16. Pietrobon D. CaV2.1 channelopathies. Pflugers Arch. 2010;460(2):375–93.CrossRefPubMedGoogle Scholar
  17. Striessnig J, Koschak A. Exploring the function and pharmacotherapeutic potential of voltage-gated Ca2+ channels with gene knockout models. Channels (Austin). 2008;2(4):233–51.CrossRefPubMedGoogle Scholar
  18. Striessnig J, Bolz HJ, Koschak A. Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels. Pflugers Arch. 2010;460(2):361–74.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Weiergraber M, Kamp MA, Radhakrishnan K, Hescheler J, Schneider T. The Ca(v)2.3 voltage-gated calcium channel in epileptogenesis–shedding new light on an enigmatic channel. Neurosci Biobehav Rev. 2006;30(8):1122–44.CrossRefPubMedGoogle Scholar
  20. Zamponi GW, Lory P, Perez-Reyes E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch. 2010;460(2):395–403.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Medicine, Division of NephrologyUniversity of MarylandBaltimoreUSA
  2. 2.Department of Medicine, Division of GastroenterologyUniversity of MarylandBaltimoreUSA