Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Voltage-Gated Calcium Channels: Structure and Function (CACNA)

  • Thomas L. Pallone
  • Sandeep Khurana
  • Chunhua Cao
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_145

Synonyms

Historical Background

Voltage-gated calcium channels (CaV) are a family of complex proteins that conduct Ca 2+ into the cell cytoplasm through a large pore-forming α 1 subunit of 190–250 kDa. They are divided into three major families CaV1.x, CaV2.x, and CaV3.x based on sequence homology of the α 1 subunit. In turn, each subfamily is comprised of four (CaV1.1–CaV1.4) or three (CaV2.1–2.3; CaV3.1–3.3) members derived from separate genes (Catterall et al. 2005). The α 1 subunits are variably associated with β, α 2δ, and γ accessory proteins that modulate expression, targeting, voltage dependence, and kinetic characteristics (Fig. 1a) (Catterall et al. 2005; Buraei and Yang 2010). Moreover, splice variants of the α 1 subunit can account for tissue-specific behavior. Alternate classification schemes exist. Table 1shows the early nomenclature; L-, P/Q-, N-, R-, and T-type, and its relationship to more modern schemes based on...
This is a preview of subscription content, log in to check access.

References

  1. Baig SM, Koschak A, Lieb A, Gebhart M, Dafinger C, Nurnberg G, et al. Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci. 2011;14(1):77–84.CrossRefPubMedGoogle Scholar
  2. Buraei Z, Yang J. The β subunit of voltage-gated Ca2+ channels. Physiol Rev. 2010;90(4):1461–506.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Cannon SC. Voltage-sensor mutations in channelopathies of skeletal muscle. J Physiol. 2010;588(Pt 11):1887–95.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57(4):411–25.CrossRefPubMedGoogle Scholar
  5. Chen CC, Lamping KG, Nuno DW, Barresi R, Prouty SJ, Lavoie JL, et al. Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science. 2003;302(5649):1416–8.CrossRefPubMedGoogle Scholar
  6. Huc S, Monteil A, Bidaud I, Barbara G, Chemin J, Lory P. Regulation of T-type calcium channels: signaling pathways and functional implications. Biochim Biophys Acta. 2009;1793(6):947–52.CrossRefPubMedGoogle Scholar
  7. Hulme JT, Yarov-Yarovoy V, Lin TW, Scheuer T, Catterall WA. Autoinhibitory control of the CaV1.2 channel by its proteolytically processed distal C-terminal domain. J Physiol. 2006;576(Pt 1):87–102.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Khosravani H, Zamponi GW. Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev. 2006;86(3):941–66.CrossRefPubMedGoogle Scholar
  9. Kim C, Jun K, Lee T, Kim SS, McEnery MW, Chin H, et al. Altered nociceptive response in mice deficient in the alpha(1B) subunit of the voltage-dependent calcium channel. Mol Cell Neurosci. 2001;18(2):235–45.CrossRefPubMedGoogle Scholar
  10. Kochegarov AA. Pharmacological modulators of voltage-gated calcium channels and their therapeutical application. Cell Calcium. 2003;33(3):145–62.CrossRefPubMedGoogle Scholar
  11. Liang H, DeMaria CD, Erickson MG, Mori MX, Alseikhan BA, Yue DT. Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron. 2003;39(6):951–60.CrossRefPubMedGoogle Scholar
  12. Liao P, Soong TW. CaV1.2 channelopathies: from arrhythmias to autism, bipolar disorder, and immunodeficiency. Pflugers Arch. 2010;460(2):353–9.CrossRefPubMedGoogle Scholar
  13. Minor Jr DL, Findeisen F. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin). 2010;4(6):459–74.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Nakagawasai O, Onogi H, Mitazaki S, Sato A, Watanabe K, Saito H, et al. Behavioral and neurochemical characterization of mice deficient in the N-type Ca2+ channel alpha1B subunit. Behav Brain Res. 2010;208(1):224–30.CrossRefPubMedGoogle Scholar
  15. Perez-Reyes E. Molecular characterization of T-type calcium channels. Cell Calcium. 2006;40(2):89–96.CrossRefPubMedGoogle Scholar
  16. Pietrobon D. CaV2.1 channelopathies. Pflugers Arch. 2010;460(2):375–93.CrossRefPubMedGoogle Scholar
  17. Striessnig J, Koschak A. Exploring the function and pharmacotherapeutic potential of voltage-gated Ca2+ channels with gene knockout models. Channels (Austin). 2008;2(4):233–51.CrossRefPubMedGoogle Scholar
  18. Striessnig J, Bolz HJ, Koschak A. Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels. Pflugers Arch. 2010;460(2):361–74.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Weiergraber M, Kamp MA, Radhakrishnan K, Hescheler J, Schneider T. The Ca(v)2.3 voltage-gated calcium channel in epileptogenesis–shedding new light on an enigmatic channel. Neurosci Biobehav Rev. 2006;30(8):1122–44.CrossRefPubMedGoogle Scholar
  20. Zamponi GW, Lory P, Perez-Reyes E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch. 2010;460(2):395–403.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Medicine, Division of NephrologyUniversity of MarylandBaltimoreUSA
  2. 2.Department of Medicine, Division of GastroenterologyUniversity of MarylandBaltimoreUSA