SLC34
Synonyms
Historical Background
Phosphorus is one of the six essential elements for life. Molecules containing anionic phosphate (PO43−) are constituents of genetic material (DNA, RNA) and are an essential building block of phospholipid membranes, bones, and teeth; high-energy phosphate bonds drive cell energetics via ATP/ADP hydrolysis; phosphorylation/dephosphorylation reactions are key events in intracellular signaling, and phosphate acts as an intra- and extracellular pH buffer. In mammals, phosphate is obtained from the diet in the form of inorganic phosphate (Pi) that exists in solution as negatively charged mono- (H2PO4−) and divalent (HPO42−) ions in the physiological pH range. As such Pimust be actively transported “uphill” across the cell membrane from the external medium against...
References
- Andrini O, Ghezzi C, Murer H, Forster IC. The leak mode of type II Na(+)-P(i) cotransporters. Channels (Austin). 2008;2(5):346–57.CrossRefGoogle Scholar
- Andrini O, Meinild AK, Ghezzi C, Murer H, Forster IC. Lithium interactions with Na+-coupled inorganic phosphate cotransporters: insights into the mechanism of sequential cation binding. Am J Phys Cell Phys. 2012;302(3):C539–54.CrossRefGoogle Scholar
- Bacconi A, Virkki LV, Biber J, Murer H, Forster IC. Renouncing electrogenicity is not free of charge: switching on electrogenicity in a Na+-coupled phosphate cotransporter. Proc Natl Acad Sci U S A. 2005;102:12606–11.PubMedPubMedCentralCrossRefGoogle Scholar
- Bergwitz C, Juppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med. 2010;61:91–104.PubMedPubMedCentralCrossRefGoogle Scholar
- Dinour D, Davidovits M, Ganon L, Ruminska J, Forster IC, Hernando N, Eyal E, Holtzman EJ, Wagner CA. Loss of function of NaPiIIa causes nephrocalcinosis and possibly kidney insufficiency. Pediatr Nephrol. 2016;31(12):2289–97.PubMedPubMedCentralCrossRefGoogle Scholar
- Fenollar-Ferrer C, Patti M, Knopfel T, Werner A, Forster IC, Forrest LR. Structural fold and binding sites of the human Na(+)-phosphate cotransporter NaPi-II. Biophys J. 2014;106(6):1268–79.PubMedPubMedCentralCrossRefGoogle Scholar
- Fenollar-Ferrer C, Forster IC, Patti M, Knoepfel T, Werner A, Forrest LR. Identification of the first sodium binding site of the phosphate cotransporter NaPi-IIa (SLC34A1). Biophys J. 2015;108(10):2465–80.PubMedPubMedCentralCrossRefGoogle Scholar
- Forster IC, Loo DD, Eskandari S. Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters. Am J Physiol. 1999;276(4 Pt 2):F644–9.PubMedPubMedCentralGoogle Scholar
- Forster IC, Kohler K, Biber J, Murer H. Forging the link between structure and function of electrogenic cotransporters: the renal type IIa Na+/Pi cotransporter as a case study. Prog Biophys Mol Biol. 2002;80(3):69–108.PubMedPubMedCentralCrossRefGoogle Scholar
- Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: a molecular perspective. Kidney Int. 2006;70(9):1548–59.PubMedPubMedCentralCrossRefGoogle Scholar
- Forster IC, Hernando N, Biber J, Murer H. Phosphate transport kinetics and structure-function relationships of SLC34 and SLC20 proteins. Curr Top Membr. 2012;70:313–56.PubMedPubMedCentralCrossRefGoogle Scholar
- Forster IC, Hernando N, Biber J, Murer H. Phosphate transporters of the SLC20 and SLC34 families. Mol Asp Med. 2013;34(2–3):386–95.CrossRefGoogle Scholar
- Ghezzi C, Murer H, Forster IC. Substrate interactions of the electroneutral Na+-coupled inorganic phosphate cotransporter (NaPi-IIc). J Physiol. 2009;587(Pt 17):4293–307.PubMedPubMedCentralCrossRefGoogle Scholar
- Giovannini D, Touhami J, Charnet P, Sitbon M, Battini JL. Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Rep. 2013;3(6):1866–73.PubMedPubMedCentralCrossRefGoogle Scholar
- Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, Kuro-o M, Moe OW. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010;24(9):3438–50.PubMedPubMedCentralCrossRefGoogle Scholar
- Hu MC, Kuro-o M, Moe OW. Renal and extrarenal actions of Klotho. Semin Nephrol. 2013;33(2):118–29.PubMedPubMedCentralCrossRefGoogle Scholar
- Khadeer MA, Tang Z, Tenenhouse HS, Eiden MV, Murer H, Hernando N, Weinman EJ, Chellaiah MA, Gupta A. Na+-dependent phosphate transporters in the murine osteoclast: cellular distribution and protein interactions. Am J Physiol. 2003;284(6):C1633–44.CrossRefGoogle Scholar
- Kohl B, Wagner CA, Huelseweh B, Busch AE, Werner A. The Na+-phosphate cotransport system (NaPi-II) with a cleaved protein backbone: implications on function and membrane insertion. J Physiol. 1998;508(Pt 2):341–50.PubMedPubMedCentralCrossRefGoogle Scholar
- Kohler K, Forster IC, Lambert G, Biber J, Murer H. The functional unit of the renal type IIa Na+/Pi cotransporter is a monomer. J Biol Chem. 2000;275(34):26113–20.PubMedPubMedCentralCrossRefGoogle Scholar
- Lederer E, Miyamoto K. Clinical consequences of mutations in sodium phosphate cotransporters. Clin J Am Soc Nephrol. 2012;7(7):1179–87.PubMedPubMedCentralCrossRefGoogle Scholar
- Lin K, Rubinfeld B, Zhang C, Firestein R, Harstad E, Roth L, Tsai SP, Schutten M, Xu K, Hristopoulos M, Polakis P. Preclinical development of an anti-NaPi2b (SLC34A2) antibody-drug conjugate as a therapeutic for non-small cell lung and ovarian cancers. Clin Cancer Res. 2015;21(22):5139–50.PubMedPubMedCentralCrossRefGoogle Scholar
- Loghman-Adham M. Use of phosphonocarboxylic acids as inhibitors of sodium-phosphate cotransport. Gen Pharmacol. 1996;27(2):305–12.PubMedPubMedCentralCrossRefGoogle Scholar
- Magagnin S, Werner A, Markovich D, Sorribas V, Stange G, Biber J, Murer H. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A. 1993;90(13):5979–83.PubMedPubMedCentralCrossRefGoogle Scholar
- Marks J, Debnam ES, Unwin RJ. The role of the gastrointestinal tract in phosphate homeostasis in health and chronic kidney disease. Curr Opin Nephrol Hypertens. 2013;22(4):481–7.PubMedPubMedCentralCrossRefGoogle Scholar
- Murer H, Hernando N, Forster I, Biber J. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev. 2000;80(4):1373–409.PubMedPubMedCentralCrossRefGoogle Scholar
- Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metab Pharmacokinet. 2008;23(1):22–44.PubMedPubMedCentralCrossRefGoogle Scholar
- Patti M, Forster IC. Correlating charge movements with local conformational changes of a na(+)-coupled cotransporter. Biophys J. 2014;106(8):1618–29.PubMedPubMedCentralCrossRefGoogle Scholar
- Patti M, Fenollar-Ferrer C, Werner A, Forrest LR, Forster IC. Cation interactions and membrane potential induce conformational changes in NaPi-IIb. Biophys J. 2016;111(5):973–88.PubMedPubMedCentralCrossRefGoogle Scholar
- Ravera S, Virkki LV, Murer H, Forster IC. Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am J Phys Cell Phys. 2007;293(2):C606–20.CrossRefGoogle Scholar
- Schlingmann KP, Ruminska J, Kaufmann M, Dursun I, Patti M, Kranz B, Pronicka E, Ciara E, Akcay T, Bulus D, Cornelissen EA, Gawlik A, Sikora P, Patzer L, Galiano M, Boyadzhiev V, Dumic M, Vivante A, Kleta R, Dekel B, Levtchenko E, Bindels RJ, Rust S, Forster IC, Hernando N, Jones G, Wagner CA, Konrad M. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol. 2016;27(2):604–14.PubMedPubMedCentralCrossRefGoogle Scholar
- Uwai Y, Arima R, Takatsu C, Furuta R, Kawasaki T, Nabekura T. Sodium-phosphate cotransporter mediates reabsorption of lithium in rat kidney. Pharmacol Res. 2014;87:94–8.PubMedPubMedCentralCrossRefGoogle Scholar
- Vergara-Jaque A, Fenollar-Ferrer C, Kaufmann D, Forrest LR. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms. Front Pharmacol. 2015a;6:1–12.CrossRefGoogle Scholar
- Vergara-Jaque A, Fenollar-Ferrer C, Mulligan C, Mindell JA, Forrest LR. Family resemblances: a common fold for some dimeric ion-coupled secondary transporters. J Gen Physiol. 2015b;146(5):423–34.PubMedPubMedCentralCrossRefGoogle Scholar
- Villa-Bellosta R, Sorribas V. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Toxicol Appl Pharmacol. 2008;232(1):125–34.PubMedPubMedCentralCrossRefGoogle Scholar
- Wagner CA, Rubio-Aliaga I, Biber J, Hernando N. Genetic diseases of renal phosphate handling. Nephrol Dial Transplant. 2014;29(Suppl 4):iv45–54.PubMedPubMedCentralCrossRefGoogle Scholar
- Weinstock J. Inhibitors of sodium-dependent phosphate transport. Expert Opin Ther Pat. 2004;14(1):3.CrossRefGoogle Scholar
- Ye W, Chen C, Gao Y, Zheng ZS, Xu Y, Yun M, Weng HW, Xie D, Ye S, Zhang JX. Overexpression of SLC34A2 is an independent prognostic indicator in bladder cancer and its depletion suppresses tumor growth via decreasing c-Myc expression and transcriptional activity. Cell Death Dis. 2017;8(2):e2581.PubMedPubMedCentralCrossRefGoogle Scholar