Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

von Willebrand Factor

  • Christian R. RobinsonEmail author
  • Ina Laura PieperEmail author
  • Venkateswarlu KanamarlapudiEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101990


Historical Background

A hereditary bleeding disorder, which is now known as von Willebrand disease (VWD), was first discovered in 1924 by Dr. Erik von Willebrand, who noted that this disorder was different to hemophilia and exhibited prolonged bleeding time, normal clotting time, and was an autosomal inherited condition. It was further discovered that blood transfusions were able to prevent this bleeding condition, suggesting that there may be a plasma factor that is deficient within the circulation (Von Willebrand 1999). The reason for the prolonged bleeding time was first revealed to be an abnormality or lack of von Willebrand factor (vWF) (Soulier and Larrieu 1954). vWF is a large glycoprotein made up of numerous subunits, each with an approximate molecular weight of 220 kDa. These subunits undergo dimerization and multimerization to form larger vWF molecules consisting of a mature peptide with molecular weights ranging from 450...

This is a preview of subscription content, log in to check access.


  1. Allen S, Abuzenadah AM, Hinks J, Blagg JL, Gursel T, Ingerslev J, et al. A novel von Willebrand disease-causing mutation (Arg273Trp) in the von Willebrand factor propeptide that results in defective multimerization and secretion. Blood. 2000;96:560–8.PubMedGoogle Scholar
  2. Chan CH, Pieper IL, Fleming S, Friedmann Y, Foster G, Hawkins K, et al. The effect of shear stress on the size, structure, and function of human von Willebrand factor. Artif Organs. 2014;38:741–50.CrossRefPubMedGoogle Scholar
  3. Ciavarella G, Ciavarella N, Antoncecchi S, De Mattia D, Ranieri P, Dent J, et al. High-resolution analysis of von Willebrand factor multimeric composition defines a new variant of type I von Willebrand disease with aberrant structure but presence of all size multimers (type IC). Blood. 1985;66:1423–9.PubMedGoogle Scholar
  4. Da Q, Teruya M, Guchhait P, Teruya J, Olson JS, Cruz MA. Free hemoglobin increases von Willebrand factor-mediated platelet adhesion in vitro: implications for circulatory devices. Blood. 2015;126:2338–41.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Di Stasio E, De Cristofaro R. The effect of shear stress on protein conformation: physical forces operating on biochemical systems: the case of von Willebrand factor. Biophys Chem. 2010;153:1–8.CrossRefPubMedGoogle Scholar
  6. Eaton D, Rodriguez H, Vehar GA. Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa, and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochemistry. 1986;25:505–12.CrossRefPubMedGoogle Scholar
  7. Eikenboom J, Van Marion V, Putter H, Goodeve A, Rodeghiero F, Castaman G, et al. Linkage analysis in families diagnosed with type 1 von Willebrand disease in the European study, molecular and clinical markers for the diagnosis and management of type 1 VWD. J Thromb Haemost. 2006;4:774–82.CrossRefPubMedGoogle Scholar
  8. Ginsburg D, Sadler JE. von Willebrand disease: a database of point mutations, insertions, and deletions. Thromb Haemost. 1993;69:177–84.CrossRefPubMedGoogle Scholar
  9. Ginsburg D, Handin RI, Bonthron DT, Donlon TA, Bruns GA, Latt SA, et al. Human von Willebrand factor (vWF): isolation of complementary DNA (cDNA) clones and chromosomal localization. Science. 1985;228:1401–6.CrossRefPubMedGoogle Scholar
  10. Majerus EM, Anderson PJ, Sadler JE. Binding of ADAMTS13 to von Willebrand Factor. J Biol Chem. 2005;280:21773–8.CrossRefPubMedGoogle Scholar
  11. Mancuso DJ, Tuley EA, Westfield LA, Worrall NK, Shelton-Inloes BB, Sorace JM, et al. Structure of the gene for human von Willebrand factor. J Biol Chem. 1989;264:19514–27.PubMedGoogle Scholar
  12. Muia J, Zhu J, Gupta GH, Haberichter SL, Friedman KD, Feys HB, Deforche L, et al. Allosteric activation of ADAMTS13 by von Willebrand factor. Proc Natl Acad Sci USA. 2014;111:18584–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Nuyttens BP, Thijs T, Deckmyn H, Broos K. Platelet adhesion to collagen. Thromb Res. 2011;127:26–9.CrossRefGoogle Scholar
  14. Patracchini P, Calzolari E, Aiello V, Palazzi P, Banin P, Marchetti G, et al. Sublocalization of von Willebrand factor pseudogene to 22q11.22-q11.23 by in situ hybridization in a 46,X,t(X;22)(pter;q11.21) translocation. Hum Genet. 1989;83:264–6.CrossRefPubMedGoogle Scholar
  15. Randi AM, Laffan MA, Starke RD. Von Willebrand factor, angiodysplasia and angiogenesis. Mediterr J Hematol Infect Dis. 2013;5:e2013060.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Rayes J, Hommais A, Legendre P, Tout H, Veyradier A, Obert B, et al. Effect of von Willebrand disease type 2B and type 2M mutations on the susceptibility of von Willebrand factor to ADAMTS-13. J Thromb Haemost. 2007;5:321–8.CrossRefPubMedGoogle Scholar
  17. Ruggeri ZM, Pareti FI, Mannucci PM, Ciavarella N, Zimmerman TS. Heightened interaction between platelets and factor VIII/von Willebrand factor in a new subtype of von Willebrand’s disease. N Engl J Med. 1980;302:1047–51.CrossRefPubMedGoogle Scholar
  18. Sadler JE, Mancuso DJ, Randi AM, Tuley EA, Westfield LA. Molecular biology of von Willebrand factor. Ann NY Acad Sci. 1991;614:114–24.CrossRefPubMedGoogle Scholar
  19. Sadler JE, Budde U, Eikenboom JC, Favaloro EJ, Hill FG, Holmberg L, et al. Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost. 2006;4:2103–14.PubMedCrossRefGoogle Scholar
  20. Soulier JP, Larrieu MJ. Willebrand-Jürgens syndrome and thrombopathies; study of 66 cases; attempt at classification. Rev Hematol. 1954;9:77–122.PubMedGoogle Scholar
  21. Sutherland JJ, O’Brien LA, Lillicrap D, Weaver DF. Molecular modeling of the von Willebrand factor A2 domain and the effects of associated type 2A von Willebrand disease mutations. J Mol Model. 2004;10:259–70.CrossRefPubMedGoogle Scholar
  22. Tiede A, Rand JH, Budde U, Ganser A, Federici AB. How I treat the acquired von Willebrand syndrome. Blood. 2011;117:6777–85.CrossRefPubMedGoogle Scholar
  23. Turner NA, Moake JL. Factor VIII is synthesized in human endothelial cells packaged in Weibel-Palade bodies and secreted bound to ULVWF strings. PLoS One. 2015;10:e0140740.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Turner NA, Nolasco L, Ruggeri ZM, Moake JL. Endothelial cell ADAMTS-13 and VWF: production, release, and VWF string cleavage. Blood. 2009;114:5102–11.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Von Willebrand EA. Hereditary pseudohaemophilia. Haemophilia. 1999;5:223–31.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Life Science 1School of Medicine, Swansea UniversitySwanseaUK
  2. 2.Calon Cardio-Technology Ltd, Institute of Life Science 2Medical School, Swansea UniversitySwanseaUK