Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Luciano Gama Braga
  • Sabine EloweEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101975


 Bub1A;  BUB1beta;  hBUBR1;  MAD3L;  MVA1;  SSK1

Related Molecules

 APC;  BUB1;  CDC25;  PP2A.

Historical Background

The BUB1B gene encodes the protein budding uninhibited by benzimidazole-related 1 (BUBR1), a vital mitotic pseudokinase of the Spindle Assembly Checkpoint (SAC). This signaling pathway is responsible for delaying anaphase onset until all chromosome are properly attached to microtubules originating from opposing poles of the mitotic spindle, and prevents errors in chromosome segregation, which can lead to aneuploidy and chromosome instability, a pathogenic state with the potential to drive oncogenesis (Holland and Cleveland 2009; Kops et al. 2005).

Human BUBR1 was discovered through sequence-database searches in a study that aimed to identify the relationship between chromosomal instability, the SAC, and neoplasia (Cahill et al. 1998). BUBR1 is considered to be the human homolog of yeast Mitotic Arrest Deficient (MAD) 3 protein, although it was first thought to...

This is a preview of subscription content, log in to check access.


  1. Ahonen LJ, Kallio MJ, Daum JR, Bolton M, Manke IA, Yaffe MB, et al. Polo-like kinase 1 creates the tension-sensing 3F3/2 phosphoepitope and modulates the association of spindle-checkpoint proteins at kinetochores. Curr Biol. 2005;15(12):1078–89.CrossRefPubMedGoogle Scholar
  2. Buffin E, Emre D, Karess RE. Flies without a spindle checkpoint. Nat Cell Biol. 2007;9(5):565–72.CrossRefPubMedGoogle Scholar
  3. Burton JL, Solomon MJ. Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev. 2007;21(6):655–67.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JKV, Markowitz SD, et al. Mutations of mitotic checkpoint genes in human cancers. Nature. 1998;392(6673):300–3.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Chan GKT, Jablonski SA, Sudakin V, Hittle JC, Yen TJ. Human Bubr1 is a mitotic checkpoint kinase that monitors Cenp-E functions at kinetochores and binds the cyclosome/APC. J Cell Biol. 1999;146(5):941–54.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell. 2006;127(5):983–97.CrossRefPubMedGoogle Scholar
  7. Chen R-H. BubR1 is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1. J Cell Biol. 2002;158(3):487–96.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Choi E, Choe H, Min J, Choi JY, Kim J, Lee H. BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing of mitosis. EMBO J. 2009;28(14):2077–89.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Choi E, Park P-G, Lee H, Lee Y-K, Kang GH, Lee JW, et al. BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation. Dev Cell. 2012;22(2):295–308.CrossRefPubMedGoogle Scholar
  10. D’Arcy S, Davies OR, Blundell TL, Bolanos-Garcia VM. Defining the molecular basis of BubR1 kinetochore interactions and APC/C-CDC20 inhibition. J Biol Chem. 2010;285(19):14764–76.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Diaz-Martinez LA, Tian W, Li B, Warrington R, Jia L, Brautigam CA, et al. The Cdc20-binding Phe Box of the spindle checkpoint protein BubR1 maintains the mitotic checkpoint complex during mitosis. J Biol Chem. 2015;290(4):2431–43.CrossRefPubMedGoogle Scholar
  12. Di Fiore B, Davey NE, Hagting A, Izawa D, Mansfeld J, Gibson TJ, et al. the abba motif binds apc/c activators and is shared by APC/C substrates and regulators. Dev Cell. 2015;32(3):358–72.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Elowe S, Dulla K, Uldschmid A, Li X, Dou Z, Nigg EA. Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1. J Cell Sci. 2010;123(1):84–94.CrossRefPubMedGoogle Scholar
  14. Elowe S, Hümmer S, Uldschmid A, Li X, Nigg EA. Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore–microtubule interactions. Genes Dev. 2007;21(17):2205–19.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Espert A, Uluocak P, Bastos RN, Mangat D, Graab P, Gruneberg U. PP2A-B56 opposes Mps1 phosphorylation of Knl1 and thereby promotes spindle assembly checkpoint silencing. J Cell Biol. 2014;206(7):833–42.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Fang G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell. 2002;13(3):755–66.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Foley EA, Kapoor TM. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol. 2013;14(1):25–37.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Han JS, Vitre B, Fachinetti D, Cleveland DW. Bimodal activation of BubR1 by Bub3 sustains mitotic checkpoint signaling. Proc Natl Acad Sci USA. 2014;111(40):E4185–93.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hanks S, Coleman K, Reid S, Plaja A, Firth H, FitzPatrick D, et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet. 2004;36(11):1159–61.CrossRefPubMedGoogle Scholar
  20. Holland AJ, Cleveland DW. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol. 2009;10(7):478–87.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Homer H, Gui L, Carroll J. A spindle assembly checkpoint protein functions in prophase I arrest and prometaphase progression. Science. 2009;326(5955):991–4.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hoyt MA, Totis L, Roberts BT. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell. 1991;66(3):507–17.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Huang H, Hittle J, Zappacosta F, Annan RS, Hershko A, Yen TJ. Phosphorylation sites in BubR1 that regulate kinetochore attachment, tension, and mitotic exit. J Cell Biol. 2008;183(4):667–80.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Iimori M, Watanabe S, Kiyonari S, Matsuoka K, Sakasai R, Saeki H, et al. Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability. Nat Commun. 2016;7:11117.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Jia L, Li B, Yu H. The Bub1-Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation. Nat Commun. 2016;7:10818.PubMedPubMedCentralCrossRefGoogle Scholar
  26. King EMJ, van der Sar SJA, KG H. Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint. PLoS ONE. 2007;2(4):e342. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1829190/PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kiyomitsu T, Murakami H, Yanagida M. Protein interaction domain mapping of human kinetochore protein blinkin reveals a consensus motif for binding of spindle assembly checkpoint proteins Bub1 and BubR1. Mol Cell Biol. 2011;31(5):998–1011.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kiyomitsu T, Obuse C, Yanagida M. Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev Cell. 2007;13(5):663–76.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kops GJPL, Foltz DR, Cleveland DW. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci USA. 2004;101(23):8699–704.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kops GJPL, Saurin AT, Meraldi P. Finding the middle ground: how kinetochores power chromosome congression. Cell Mol Life Sci. 2010;67(13):2145–61.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kops GJPL, Weaver BAA, Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer. 2005;5(10):773–85.CrossRefPubMedGoogle Scholar
  32. Krenn V, Overlack K, Primorac I, van Gerwen S, Musacchio A. KI motifs of human Knl1 enhance assembly of comprehensive spindle checkpoint complexes around MELT repeats. Curr Biol. 2014;24(1):29–39.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Krenn V, Wehenkel A, Li X, Santaguida S, Musacchio A. Structural analysis reveals features of the spindle checkpoint kinase Bub1–kinetochore subunit Knl1 interaction. J Cell Biol. 2012;196(4):451–67.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kruse T, Zhang G, Larsen MSY, Lischetti T, Streicher W, Kragh Nielsen T, et al. Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression. J Cell Sci. 2013;126(Pt 5):1086–92.CrossRefPubMedGoogle Scholar
  35. Lampson MA, Kapoor TM. The human mitotic checkpoint protein BubR1 regulates chromosome–spindle attachments. Nat Cell Biol. 2005;7(1):93–8.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Lan W, Zhang X, Kline-Smith SL, Rosasco SE, Barrett-Wilt GA, Shabanowitz J, et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol. 2004;14(4):273–86.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Lara-Gonzalez P, Scott MIF, Diez M, Sen O, Taylor SS. BubR1 blocks substrate recruitment to the APC/C in a KEN-box-dependent manner. J Cell Sci. 2011;124(24):4332–45.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Li R, Murray AW. Feedback control of mitosis in budding yeast. Cell. 1991;66(3):519–31.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Lischetti T, Zhang G, Sedgwick GG, Bolanos-Garcia VM, Nilsson J. The internal Cdc20 binding site in BubR1 facilitates both spindle assembly checkpoint signalling and silencing. Nat Commun. 2014;5:5563.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Liu D, Vleugel M, Backer CB, Hori T, Fukagawa T, Cheeseman IM, et al. Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J Cell Biol. 2010;188(6):809–20.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Malmanche N, Owen S, Gegick S, Steffensen S, Tomkiel JE, Sunkel CE. Drosophila BubR1 is essential for meiotic sister-chromatid cohesion and maintenance of synaptonemal complex. Curr Biol. 2007;17(17):1489–97.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Malureanu LA, Jeganathan KB, Hamada M, Wasilewski L, Davenport J, van Deursen JM. BubR1 N terminus acts as a soluble inhibitor of cyclin B degradation by APC/C(Cdc20) in interphase. Dev Cell. 2009;16(1):118–31.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Mao Y, Abrieu A, Cleveland DW. Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell. 2003;114(1):87–98.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Matsumura S, Toyoshima F, Nishida E. Polo-like Kinase 1 facilitates chromosome alignment during prometaphase through BubR1. J Biol Chem. 2007;282(20):15217–27.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Matsuura S, Matsumoto Y, Morishima K, Izumi H, Matsumoto H, Ito E, et al. Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. Am J Med Genet A. 2006;140A(4):358–67.CrossRefGoogle Scholar
  46. Meraldi P, Draviam VM, Sorger PK. Timing and checkpoints in the regulation of mitotic progression. Dev Cell. 2004;7(1):45–60.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Murray AW. Don’t make me mad, Bub! Dev. Cell. 2012;22(6):1123–5.Google Scholar
  48. Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol. 2007;8(5):379–93.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Nicklas RB, Ward SC, Gorbsky GJ. Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint. J Cell Biol. 1995;130(4):929–39.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Nijenhuis W, Vallardi G, Teixeira A, Kops GJPL, Saurin AT. Negative feedback at kinetochores underlies a responsive spindle checkpoint signal. Nat Cell Biol. 2014;16(12):1257–64.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Overlack K, Primorac I, Vleugel M, Krenn V, Maffini S, Hoffmann I, et al. A molecular basis for the differential roles of Bub1 and BubR1 in the spindle assembly checkpoint. Elife. 2015;4:e05269.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Park I, Lee H, Choi E, Lee Y-K, Kwon M-S, Min J, et al. Loss of BubR1 acetylation causes defects in spindle assembly checkpoint signaling and promotes tumor formation. J Cell Biol. 2013;202(2):295–309.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Primorac I, Weir JR, Chiroli E, Gross F, Hoffmann I, Gerwen S v, et al. Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling. Elife. 2013;2:e01030.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Rahmani Z, Gagou ME, Lefebvre C, Emre D, Karess RE. Separating the spindle, checkpoint, and timer functions of BubR1. J Cell Biol. 2009;187(5):597–605.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Rancati G, Crispo V, Lucchini G, Piatti S. Mad3/BubR1 phosphorylation during spindle checkpoint activation depends on both polo and aurora kinases in budding yeast. Cell Cycle. 2005;4(7):972–80.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Sudakin V, Chan GK, Yen TJ. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol. 2001;154(5):925–36.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Suijkerbuijk SJE, van Osch MHJ, Bos FL, Hanks S, Rahman N, Kops GJPL. Molecular causes for BUBR1 dysfunction in the human cancer predisposition syndrome mosaic variegated aneuploidy. Cancer Res. 2010;70(12):4891–900.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Suijkerbuijk SJE, van Dam TJP, Karagöz GE, von Castelmur E, Hubner NC, Duarte AMS, et al. The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase. Dev Cell. 2012a;22(6):1321–9.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Suijkerbuijk SJE, Vleugel M, Teixeira A, Kops GJPL. Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev Cell. 2012b;23(4):745–55.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Tang Z, Bharadwaj R, Li B, Yu H. Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell. 2001;1(2):227–37.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Taylor SS, Ha E, McKeon F. The Human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J Cell Biol. 1998;142(1):1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Touati SA, Buffin E, Cladière D, Hached K, Rachez C, van Deursen JM, et al. Mouse oocytes depend on BubR1 for proper chromosome segregation but not for prophase I arrest. Nat Commun. 2015;6:6946.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Vleugel M, Hoogendoorn E, Snel B, Kops GJPL. Evolution and function of the mitotic checkpoint. Dev Cell. 2012;23(2):239–50.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Vleugel M, Tromer E, Omerzu M, Groenewold V, Nijenhuis W, Snel B, et al. Arrayed BUB recruitment modules in the kinetochore scaffold KNL1 promote accurate chromosome segregation. J Cell Biol. 2013;203(6):943–55.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Wang J, Wang Z, Yu T, Yang H, Virshup DM, Kops GJPL, et al. Crystal structure of a PP2A B56-BubR1 complex and its implications for PP2A substrate recruitment and localization. Protein Cell. 2016;7(7):516–26.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Wei L, Liang X-W, Zhang Q-H, Li M, Yuan J, Li S, et al. BubR1 is a spindle assembly checkpoint protein regulating meiotic cell cycle progression of mouse oocyte. Cell Cycle. 2010;9(6):1112–21.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Welburn JPI, Vleugel M, Liu D, Yates JR, Lampson MA, Fukagawa T, et al. Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol Cell. 2010;38(3):383–92.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Wong OK, Fang G. Cdk1 phosphorylation of BubR1 controls spindle checkpoint arrest and Plk1-mediated formation of the 3F3/2 epitope. J Cell Biol. 2007;179(4):611–7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Xu P, Raetz EA, Kitagawa M, Virshup DM, Lee SH. BUBR1 recruits PP2A via the B56 family of targeting subunits to promote chromosome congression. Biol Open 2013;2(5):479–486.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Yang F, Hu L, Chen C, Yu J, O’Connell CB, Khodjakov A, et al. BubR1 is modified by sumoylation during mitotic progression. J Biol Chem. 2012a;287(7):4875–82.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Yang F, Huang Y, Dai W. Sumoylated BubR1 plays an important role in chromosome segregation and mitotic timing. Cell Cycle. 2012b;11(4):797–806.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Yekezare M, Pines J. Escaping the firing squad: acetylation of BubR1 protects it from degradation in checkpoint cells. EMBO J. 2009;28(14):1991–3.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Programme in Cellular and Molecular BiologyFaculty of Medicine, Université LavalQuébecCanada
  2. 2.Axe of Reproduction, Mother and Youth HealthCentre de recherche du Centre Hospitalier Universitairé de QuebecQuébecCanada
  3. 3.The Department of Pediatrics, Faculty of MedicineUniversité LavalQuébec CityCanada