Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Matías BlausteinEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101974



Historical Background

AKT is a serine/threonine kinase member of the AGC family of protein kinases, which is conserved from primitive metazoan to humans, and it was discovered in 1977 (Staal et al. 1977). There are three isoforms of AKT in mammals (AKT1, AKT2, and AKT3), each transcribed from separate genes (Jones et al. 1991a, b; Konishi et al. 1995; Brodbeck et al. 1999). During the last decade of the twentieth century, different groups contributed to establish that all AKT isoforms contain an N-terminal pleckstrin homology (PH) domain that interacts with phosphatidylinositol (3,4,5)-trisphosphate (PIP3) (Andjelkovic et al. 1997; Franke et al. 1997), a central kinase or catalytic domain and a C-terminal domain that contains an hydrophobic motif (HM) with homology to other AGC kinases (Alessi et al. 1996). It is now known that AKT exert their action by phosphorylating a wide variety of downstream targets containing the...

This is a preview of subscription content, log in to check access.


  1. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996;15:6541–51.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol: CB. 1997;7:261–9.PubMedCrossRefGoogle Scholar
  3. Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24:7455–64. doi:1209085 [pii] 1038/sj.onc.1209085.Google Scholar
  4. Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M, et al. Role of translocation in the activation and function of protein kinase B. J Biol Chem. 1997;272:31515–24.PubMedCrossRefGoogle Scholar
  5. Arroyo JD, Hahn WC. Involvement of PP2A in viral and cellular transformation. Oncogene. 2005;24:7746–55. doi:10.1038/sj.onc.1209038.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Askham JM, Platt F, Chambers PA, Snowden H, Taylor CF, Knowles MA. AKT1 mutations in bladder cancer: identification of a novel oncogenic mutation that can co-operate with E17K. Oncogene. 2010;29:150–5. doi:10.1038/onc.2009.315.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer. 1995;64:280–5.PubMedCrossRefGoogle Scholar
  8. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in cancer: implications for therapeutic targeting. Advances in cancer research. 2005;94:29-86. doi:S0065-230X(05)94002-5 [pii].PubMedCrossRefGoogle Scholar
  9. Berndt N, Yang H, Trinczek B, Betzi S, Zhang Z, Wu B, et al. The AKT activation inhibitor TCN-P inhibits AKT phosphorylation by binding to the PH domain of AKT and blocking its recruitment to the plasma membrane. Cell Death Differ. 2010;17:1795–804. doi:cdd201063 [pii] 101038/cdd.2010.63.Google Scholar
  10. Biondo A, Yap TA, Yan L, Patnaik A, Fearen I, Baird RD, et al. Phase I clinical trial of an allosteric AKT inhibitor, MK-2206, using a once weekly (QW) dose regimen in patients with advanced solid tumors. J Clin Oncol. 2011;29:3037.CrossRefGoogle Scholar
  11. Blaustein M, Perez-Munizaga D, Sanchez MA, Urrutia C, Grande A, Risso G, et al. Modulation of the AKT pathway reveals a novel link with PERK/eIF2alpha, which is relevant during hypoxia. PLoS One. 2013;8:e69668. doi:10.1371/journal.pone.0069668.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bozulic L, Surucu B, Hynx D, Hemmings BA. PKBalpha/AKT1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell. 2008;30:203–13. doi:10.1016/j.molcel.2008.02.024.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brazil DP, Hemmings BA. Ten years of protein kinase B signalling: a hard AKT to follow. Trends Biochem Sci. 2001;26:657–64.PubMedCrossRefGoogle Scholar
  14. Brazil DP, Park J, Hemmings BA. PKB binding proteins. Getting in on the AKT. Cell. 2002;111:293–303.PubMedCrossRefGoogle Scholar
  15. Brodbeck D, Cron P, Hemmings BA. A human protein kinase Bgamma with regulatory phosphorylation sites in the activation loop and in the C-terminal hydrophobic domain. J Biol Chem. 1999;274:9133–6.PubMedCrossRefGoogle Scholar
  16. Brognard J, Sierecki E, Gao T, Newton AC. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of AKT signaling by regulating distinct AKT isoforms. Mol Cell. 2007;25:917–31. doi:10.1016/j.molcel.2007.02.017.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448:439–44. doi:10.1038/nature05933.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chen ML, Xu PZ, Peng XD, Chen WS, Guzman G, Yang X, et al. The deficiency of AKT1 is sufficient to suppress tumor development in Pten+/− mice. Genes Dev. 2006;20:1569–74. doi:10.1101/gad.1395006.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cheung M, Testa JR. Diverse mechanisms of AKT pathway activation in human malignancy. Current cancer drug targets. 2013;13:234–44.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC, et al. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci U S A. 1992;89:9267–71.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomare DA, Watson DK, et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA. 1996;93:3636–41.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dey BR, Frick K, Lopaczynski W, Nissley SP, Furlanetto RW. Evidence for the direct interaction of the insulin-like growth factor I receptor with IRS-1, Shc, and Grb10. Mol Endocrinol. 1996;10:631–41.PubMedPubMedCentralGoogle Scholar
  23. Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet. 2001;27:222–4. doi:10.1038/84879.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Drenan RM, Liu X, Bertram PG, Zheng XF. FKBP12-rapamycin-associated protein or mammalian target of rapamycin (FRAP/mTOR) localization in the endoplasmic reticulum and the Golgi apparatus. J Biol Chem. 2004;279:772–8. doi:10.1074/jbc.M305912200.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Du X, Kristiana I, Wong J, Brown AJ. Involvement of AKT in ER-to-Golgi transport of SCAP/SREBP: a link between a key cell proliferative pathway and membrane synthesis. Mol Biol Cell. 2006;17:2735–45. doi:10.1091/mbc.E05-11-1094.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, et al. The mammalian target of rapamycin complex 2 controls folding and stability of AKT and protein kinase C. EMBO J. 2008;27:1932–43. doi:10.1038/emboj.2008.120.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fayard E, Tintignac LA, Baudry A, Hemmings BA. Protein kinase B/AKT at a glance. J Cell Sci. 2005;118:5675–8. doi:118/24/5675 [pii] 281242/jcs.02724.Google Scholar
  28. Franke TF, Kaplan DR, Cantley LC, Toker A. Direct regulation of the AKT proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science. 1997;275:665–8.PubMedCrossRefGoogle Scholar
  29. Gaitonde S, De SK, Tcherpakov M, Dewing A, Yuan H, Riel-Mehan M, et al.. BI-69A11-mediated inhibition of AKT leads to effective regression of xenograft melanoma. Pigment Cell Melanoma Res. 2009;22:187–95. doi:PCR544 [pii] 311111/j.1755-148X.2009.00544.x.Google Scholar
  30. Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly dephosphorylates AKT, promotes apoptosis, and suppresses tumor growth. Mol Cell. 2005;18:13–24. doi:10.1016/j.molcel.2005.03.008.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Geering B, Cutillas PR, Nock G, Gharbi SI, Vanhaesebroeck B. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc Natl Acad Sci U S A. 2007;104:7809–14. doi:10.1073/pnas.0700373104.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Guo J, Chakraborty AA, Liu P, Gan W, Zheng X, Inuzuka H, et al. pVHL suppresses kinase activity of AKT in a proline-hydroxylation-dependent manner. Science. 2016;353:929–32. doi:10.1126/science.aad5755.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hers I, Vincent EE, Tavare JM. Akt signalling in health and disease. Cellular signalling. 2011;23:1515-27. doi:10.1016/j.cellsig.2011.05.004.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hill MM, Feng J, Hemmings BA. Identification of a plasma membrane raft-associated PKB Ser473 kinase activity that is distinct from ILK and PDK1. Curr Biol: CB. 2002;12:1251–5.PubMedCrossRefGoogle Scholar
  35. Hosoi T, Hyoda K, Okuma Y, Nomura Y, Ozawa K. AKT up- and down-regulation in response to endoplasmic reticulum stress. Brain Res. 2007;1152:27–31. doi:S0006-8993(07)00654-3 [pii] 371016/j.brainres.2007.03.052.Google Scholar
  36. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16:3–34.PubMedPubMedCentralGoogle Scholar
  37. Jones PF, Jakubowicz T, Hemmings BA. Molecular cloning of a second form of rac protein kinase. Cell Regul. 1991a;2:1001–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci USA. 1991b;88:4171–5.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kalinsky K, Sparano JA, Kim M, Crew KD, Maurer MA, Taback B, et al. Presurgical evaluation of the AKT inhibitor MK-2206 in patients with operable invasive breast cancer. J Clin Oncol. 2011;29:TPS147.CrossRefGoogle Scholar
  40. Kau TR, Schroeder F, Ramaswamy S, Wojciechowski CL, Zhao JJ, Roberts TM, et al.. A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell. 2003;4:463–76. doi:S1535610803003039 [pii].Google Scholar
  41. Kim MS, Jeong EG, Yoo NJ, Lee SH. Mutational analysis of oncogenic AKT E17K mutation in common solid cancers and acute leukaemias. Br J Cancer. 2008;98:1533–5. doi:10.1038/sj.bjc.6604212.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Konishi H, Kuroda S, Tanaka M, Matsuzaki H, Ono Y, Kameyama K, et al. Molecular cloning and characterization of a new member of the RAC protein kinase family: association of the pleckstrin homology domain of three types of RAC protein kinase with protein kinase C subspecies and beta gamma subunits of G proteins. Biochem Biophys Res Commun. 1995;216:526–34.PubMedCrossRefGoogle Scholar
  43. Lauring J, Park BH, Wolff AC. The phosphoinositide-3-kinase-AKT-mTOR pathway as a therapeutic target in breast cancer. J Nat Compr Cancer Netw: JNCCN. 2013;11:670–8.CrossRefGoogle Scholar
  44. Majumder PK, Yeh JJ, George DJ, Febbo PG, Kum J, Xue Q, et al. Prostate intraepithelial neoplasia induced by prostate restricted AKT activation: the MPAKT model. Proc Natl Acad Sci USA. 2003;100:7841–6. doi:10.1073/pnas.1232229100.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, et al. mTOR inhibition reverses AKT-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 2004;10:594–601. doi:10.1038/nm1052.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Malanga D, Scrima M, De Marco C, Fabiani F, De Rosa N, De Gisi S, et al. Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung. Cell Cycle. 2008;7:665–9.PubMedCrossRefGoogle Scholar
  47. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261-74. doi:10.1016/j.cell.2007.06.009.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Matsunaga K, Morita E, Saitoh T, Akira S, Ktistakis NT, Izumi T, et al.. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol. 2010;190:511–21. doi:jcb.200911141 [pii] 501083/jcb.200911141.Google Scholar
  49. Mendoza MC, Blenis J. PHLPPing it off: phosphatases get in the AKT. Mol Cell. 2007;25:798–800. doi:10.1016/j.molcel.2007.03.007.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Millward TA, Zolnierowicz S, Hemmings BA. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci. 1999;24:186–91.PubMedCrossRefGoogle Scholar
  51. Miyake H, Nelson C, Rennie PS, Gleave ME. Overexpression of insulin-like growth factor binding protein-5 helps accelerate progression to androgen-independence in the human prostate LNCaP tumor model through activation of phosphatidylinositol 3′-kinase pathway. Endocrinology. 2000;141:2257–65.PubMedCrossRefGoogle Scholar
  52. Mohamedali A, Lea NC, Feakins RM, Raj K, Mufti GJ, Kocher HM. AKT1 (E17K) mutation in pancreatic cancer. Technol Cancer Res Treat. 2008;7:407–8.PubMedCrossRefGoogle Scholar
  53. Mounir Z, Krishnamoorthy JL, Wang S, Papadopoulou B, Campbell S, Muller WJ, et al. AKT determines cell fate through inhibition of the PERK-eIF2alpha phosphorylation pathway. Sci Signal. 2011;4:ra62. doi:10.1126/scisignal.2001630.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nakatani K, Thompson DA, Barthel A, Sakaue H, Liu W, Weigel RJ, et al. Up-regulation of AKT3 in estrogen receptor-deficient breast cancers and androgen-independent prostate cancer lines. J Biol Chem. 1999;274:21528–32.PubMedCrossRefGoogle Scholar
  55. Park SY, Ryu J, Lee W. O-GlcNAc modification on IRS-1 and AKT2 by PUGNAc inhibits their phosphorylation and induces insulin resistance in rat primary adipocytes. Exp Mol Med. 2005;37:220–9. doi:10.1038/emm.2005.30.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Riggio M, Polo ML, Blaustein M, Colman-Lerner A, Luthy I, Lanari C, et al. PI3K/AKT pathway regulates phosphorylation of steroid receptors, hormone independence and tumor differentiation in breast cancer. Carcinogenesis. 2012;33:509–18. doi:10.1093/carcin/bgr303.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Risso G, Pelisch F, Pozzi B, Mammi P, Blaustein M, Colman-Lerner A, et al. Modification of AKT by SUMO conjugation regulates alternative splicing and cell cycle. Cell Cycle. 2013;12:3165–74. doi:10.4161/cc.26183.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Risso G, Blaustein M, Pozzi B, Mammi P, Srebrow A. AKT/PKB: one kinase, many modifications. Biochem J. 2015;468:203–14. doi:10.1042/BJ20150041.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Santi SA, Lee H. The AKT isoforms are present at distinct subcellular locations. Am J Physiol Cell Physiol. 2010;298:C580–91. doi:ajpcell.00375.2009 [pii] 621152/ajpcell.00375.2009.Google Scholar
  60. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of AKT/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101. doi:10.1126/science.1106148.CrossRefPubMedGoogle Scholar
  61. Sharpe LJ, Luu W, Brown AJ. AKT phosphorylates Sec24: new clues into the regulation of ER-to-Golgi trafficking. Traffic. 2011;12:19–27. doi:10.1111/j.1600-0854.2010.01133.x.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Shoji K, Oda K, Nakagawa S, Hosokawa S, Nagae G, Uehara Y, et al. The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas. Br J Cancer. 2009;101:145–8. doi:10.1038/sj.bjc.6605109.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Staal SP. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA. 1987;84:5034–7.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Staal SP, Hartley JW, Rowe WP. Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci USA. 1977;74:3065–7.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Stahl JM, Sharma A, Cheung M, Zimmerman M, Cheng JQ, Bosenberg MW, et al. Deregulated AKT3 activity promotes development of malignant melanoma. Cancer Res. 2004;64:7002–10. doi:10.1158/0008-5472.CAN-04-1399.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sun Q, Wu R, Cai S, Lin Y, Sellers L, Sakamoto K, et al. Synthesis and biological evaluation of analogues of AKT (protein kinase B) inhibitor-IV. J Med Chem. 2011;54:1126–39. doi:10.1021/jm100912b.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P, Parekh V, et al. The deacetylase SIRT1 promotes membrane localization and activation of AKT and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal. 2011;4:ra46. doi:10.1126/scisignal.2001465.CrossRefPubMedGoogle Scholar
  68. Talbert EE, Yang J, Mace TA, Farren MR, Farris AB, Young GS, et al. Dual inhibition of MEK and PI3K/AKT rescues cancer cachexia through both tumor extrinsic and intrinsic activities. Mol Cancer Ther. 2016. doi:10.1158/1535-7163.MCT-16-0337.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Toker A, Newton AC. AKT/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J Biol Chem. 2000;275:8271–4.PubMedCrossRefGoogle Scholar
  70. Toker A, Yoeli-Lerner M. AKT signaling and cancer: surviving but not moving on. Cancer Res. 2006;66:3963–6. doi:66/8/3963 [pii] 741158/0008-5472.CAN-06-0743.Google Scholar
  71. Wani R, Bharathi NS, Field J, Tsang AW, Furdui CM. Oxidation of AKT2 kinase promotes cell migration and regulates G1-S transition in the cell cycle. Cell Cycle. 2011a;10:3263–8. doi:10.4161/cc.10.19.17738.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wani R, Qian J, Yin L, Bechtold E, King SB, Poole LB, et al. Isoform-specific regulation of AKT by PDGF-induced reactive oxygen species. Proc Natl Acad Sci U S A. 2011b;108:10550–5. doi:10.1073/pnas.1011665108.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B, et al.. The E3 ligase TRAF6 regulates AKT ubiquitination and activation. Science. 2009;325:1134–8. doi:325/5944/1134 [pii] 781126/science.1175065.Google Scholar
  74. Zilberman DE, Cohen Y, Amariglio N, Fridman E, Ramon J, Rechavi G. AKT1 E17 K pleckstrin homology domain mutation in urothelial carcinoma. Cancer Genet Cytogenet. 2009;191:34–7. doi:10.1016/j.cancergencyto.2009.01.009.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.CONICET-Universidad de Buenos AiresInstituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE)Buenos AiresArgentina