Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Calmodulin (CALM1)

  • Michael Kirberger
  • Rakshya Gorkhali
  • Mani Salarian
  • Jenny Y. Yang
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101972

Synonyms

 CALM1: CaM; caM; CAMI; PHKD; CPVT4; DD132; LQT14; CALML2  CALM2: PHKD; CAMII; LQT15; PHKD2

 CALM3: CaM; PHKD; PHKD3; CaMIII; HEL-S-72

Historical Background

Calmodulin (CaM) was first discovered as an unidentified activator of cyclic 3′,5′-nucleotide phosphodiesterase (Cheung 1970). Human CaM is encoded by three distinct genes (CALM1, CALM2, and CALM3), which exhibit minor variations at the nucleotide level, yet express the same amino acid sequence. CaM is a predominantly helical intracellular protein (Fig. 1a) that mediates numerous Ca 2+-signaling activities in response to changes in cytosolic Ca 2+ levels. CaM can be divided into two globular domains, each containing two cooperatively paired EF-hand motifs, allowing it to bind up to four Ca 2+ ions (Kretsinger and Nockolds 1973) (Fig. 1b).
This is a preview of subscription content, log in to check access.

References

  1. Bahler M, Rhoads A. Calmodulin signaling via the IQ motif. FEBS Lett. 2002;513(1):107–13.PubMedCrossRefGoogle Scholar
  2. Cheung WY. Cyclic 3',5'-nucleotide phosphodiesterase: demonstration of an activator. Biochem Biophys Res Commun. 1970;38(3):533–8.PubMedCrossRefGoogle Scholar
  3. Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation. 2013;127(9):1009–17.PubMedCrossRefGoogle Scholar
  4. Evans TI, Shea MA. Energetics of calmodulin domain interactions with the calmodulin binding domain of CaMKII. Proteins. 2009;76(1):47–61.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Feldkamp MD, Yu L, Shea MA. Structural and energetic determinants of apo calmodulin binding to the IQ motif of the Na(V)1.2 voltage-dependent sodium channel. Structure. 2011;19(5):733–47.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Fischer R, Koller M, Flura M, Mathews S, Strehler-Page MA, Krebs J, et al. Multiple divergent mRNAs code for a single human calmodulin. J Biol Chem. 1988;263(32):17055–62.PubMedPubMedCentralGoogle Scholar
  7. Gifford JL, Walsh MP, Vogel HJ. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J. 2007;405:199–221.PubMedCrossRefGoogle Scholar
  8. Ikura M, Ames JB. Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Proc Natl Acad Sci U S A. 2006;103(5):1159–64.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Jiang J, Zhou Y, Zou J, Chen Y, Patel P, Yang JJ, et al. Site-specific modification of calmodulin Ca(2)(+) affinity tunes the skeletal muscle ryanodine receptor activation profile. Biochem J. 2010;432(1):89–99.PubMedCrossRefGoogle Scholar
  10. Kirberger M, Wong HC, Jiang J, Yang JJ. Metal toxicity and opportunistic binding of Pb(2+) in proteins. J Inorg Biochem. 2013;125:40–9.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Kretsinger RH, Nockolds CE. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem. 1973;248(9):3313–26.PubMedPubMedCentralGoogle Scholar
  12. Linse S, Forsen S. Determinants that govern high-affinity calcium binding. Adv Second Messenger Phosphoprotein Res. 1995;30:89–151.PubMedCrossRefGoogle Scholar
  13. Maximciuc AA, Putkey JA, Shamoo Y, Mackenzie KR. Complex of calmodulin with a ryanodine receptor target reveals a novel, flexible binding mode. Structure. 2006;14(10):1547–56.PubMedCrossRefGoogle Scholar
  14. Merrill MA, Malik Z, Akyol Z, Bartos JA, Leonard AS, Hudmon A, et al. Displacement of alpha-actinin from the NMDA receptor NR1 C0 domain By Ca2+/calmodulin promotes CaMKII binding. Biochemistry. 2007;46(29):8485–97.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Osawa M, Tokumitsu H, Swindells MB, Kurihara H, Orita M, Shibanuma T, et al. A novel target recognition revealed by calmodulin in complex with Ca2+-calmodulin-dependent kinase kinase. Nat Struct Biol. 1999;6:819–824.Google Scholar
  16. Suh YH, Park JY, Park S, Jou I, Roche PA, Roche KW. Regulation of metabotropic glutamate receptor 7 (mGluR7) internalization and surface expression by Ser/Thr protein phosphatase 1. J Biol Chem. 2013;288(24):17544–51.PubMedPubMedCentralCrossRefGoogle Scholar
  17. VanScyoc WS, Shea MA. Phenylalanine fluorescence studies of calcium binding to N-domain fragments of Paramecium calmodulin mutants show increased calcium affinity correlates with increased disorder. Protein Sci. 2001;10(9):1758–68.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Walweel K, Oo YW, Laver DR. The emerging role of calmodulin regulation of RyR2 in controlling heart rhythm, the progression of heart failure and the antiarrhythmic action of dantrolene. Clin Exp Pharmacol Physiol. 2017;44(1):135–42.PubMedCrossRefGoogle Scholar
  19. Wang H, Gao X, Yang JJ, Liu ZR. Interaction between p68 RNA helicase and Ca2+-calmodulin promotes cell migration and metastasis. Nat Commun. 2013;4:1354.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Wang X, Putkey JA. PEP-19 modulates calcium binding to calmodulin by electrostatic steering. Nat Commun. 2016;7:13583.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Wright NT, Prosser BL, Varney KM, Zimmer DB, Schneider MF, Weber DJ. S100A1 and calmodulin compete for the same binding site on ryanodine receptor. J Biol Chem. 2008;283(39):26676–83.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Zou J, Salarian M, Chen Y, Veenstra R, Louis CF, Yang JJ. Gap junction regulation by calmodulin. FEBS Lett. 2014;588(8):1430–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Georgia Gwinnett CollegeLawrencevilleUSA
  2. 2.Georgia State UniversityAtlantaUSA