Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

IKK (IκB Kinase) Complex

  • Gilles CourtoisEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101969


Historical Background

IKK ( B kinase) is the central regulator of the NF-κB signaling pathway, which plays a key role in immunity, inflammation, and cell survival (Karin and Ben-Neriah 2000; Hayden and Ghosh 2012). NF-κB is the generic name of a family of inducible dimeric transcription factors that are sequestered in the cytoplasm of resting cells by interaction with inhibitory protein IκBs. Upon cell stimulation ΙκBs are phosphorylated, and this modification triggers their ubiquitination and destruction by the proteasome. This allows free NF-κB proteins to translocate in the nucleus and to activate their target genes (Fig. 1).
This is a preview of subscription content, log in to check access.



I thank Dr. Jérémie Gautheron for preparing Fig. 5.


  1. Abbott DW, Wilkins A, Asara JM, Cantley LC. The Crohn’s disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr Biol. 2004;14:2217–27.CrossRefPubMedGoogle Scholar
  2. Ashida H, Kim M, Schmidt-Supprian M, Ma A, Ogawa M, Sasakawa C. A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKγ to dampen the host NF-κB-mediated inflammatory response. Nat Cell Biol. 2010;12:66–73.CrossRefPubMedGoogle Scholar
  3. Bagnéris C, Ageichik AV, Cronin N, Wallace B, Collins M, Boshoff C, Waksman G, Barrett T. Crystal structure of a vFlip-IKKγ complex: insights into viral activation of the IKK signalosome. Mol Cell. 2008;30:620–31.CrossRefPubMedGoogle Scholar
  4. Bollrath J, Greten FR. IKK/NF-κB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep. 2009;10:1314–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Chariot A. The NF-κB-independent functions of IKK subunits in immunity and cancer. Trends Cell Biol. 2009;19:404–13.CrossRefPubMedGoogle Scholar
  6. Chen G, Cao P, Goeddel DV. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell. 2002;9:401–10.CrossRefPubMedGoogle Scholar
  7. Connelly MA, Marcu KB. CHUK, a new member of the helix-loop-helix and leucine zipper families of interacting proteins, contains a serine-threonine kinase catalytic domain. Cell Mol Biol Res. 1995;41:537–49.PubMedGoogle Scholar
  8. Cordier F, Grubisha O, Traincard F, Véron M, Delepierre M, Agou F. The zinc finger of NEMO is a functional ubiquitin-binding domain. J Biol Chem. 2009;284:2902–7.CrossRefPubMedGoogle Scholar
  9. Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I, Kepp O, Tasdemir E, Galluzzi L, Shen S, Tailler M, Delahaye N, Tesniere A, De Stefano D, Younes AB, Harper F, Pierron G, Lavandero S, Zitvogel L, Israel A, Baud V, Kroemer G. The IKK complex contributes to the induction of autophagy. EMBO J. 2010;29:619–31.CrossRefPubMedGoogle Scholar
  10. Ducut Sigala JL, Bottero V, Young DB, Shevchenko A, Mercurio F, Verma IM. Activation of transcription factor NF-κB requires ELKS, an IκB kinase regulatory subunit. Science. 2004;304:1963–7.CrossRefPubMedGoogle Scholar
  11. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature. 1997;388:548–54.CrossRefPubMedGoogle Scholar
  12. Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012;26:203–34.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Kaisho T, Tanaka T. Turning NF-κB and IRFs on and off in DC. Trends Immunol. 2008;29:329–36.CrossRefPubMedGoogle Scholar
  14. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol. 2000;18:621–63.CrossRefPubMedGoogle Scholar
  15. Karin M, Greten FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5:749–59.CrossRefPubMedGoogle Scholar
  16. Laplantine E, Fontan E, Chiaravalli J, Lopez T, Lakisic G, Véron M, Agou F, Israël A. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J. 2009;28:2885–95.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Lin X, Wang D. The roles of CARMA1, Bcl10, and MALT1 in antigen receptor signaling. Semin Immunol. 2004;16:429–35.CrossRefPubMedGoogle Scholar
  18. McCool KW, Miyamoto S. DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out. Immunol Rev. 2012;246:311–26.PubMedPubMedCentralCrossRefGoogle Scholar
  19. May MJ, D'Acquisto F, Madge LA, Glöckner J, Pober JS, Ghosh S. Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex. Science. 2000;289:1550–4.CrossRefPubMedGoogle Scholar
  20. May MJ, Larsen SE, Shim JH, Madge LA, Ghosh S. A novel ubiquitin-like domain in IκB kinase β is required for functional activity of the kinase. J Biol Chem. 2004;279:45528–39.CrossRefPubMedGoogle Scholar
  21. Medunjanin S, Schleithoff L, Fiegehenn C, Weinert S, Zuschratter W, Braun-Dullaeus RC. GSK-3″ controls NF-κB activity via IKK≥/NEMO. Sci Rep. 2016;6:38553.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science. 1997;278:860–6.CrossRefPubMedGoogle Scholar
  23. Mercurio F, Murray BW, Shevchenko A, Bennett BL, Young DB, Li JW, Pascual G, Motiwala A, Zhu H, Mann M, Manning AM. IκB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol Cell Biol. 1999;19:1526–38.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Palkowitsch L, Leidner J, Ghosh S, Marienfeld RB. Phosphorylation of serine 68 in the IκB kinase (IKK)-binding domain of NEMO interferes with the structure of the IKK complex and tumor necrosis factor-alpha-induced NF-κB activity. J Biol Chem. 2008;283:76–86.CrossRefPubMedGoogle Scholar
  25. Polley S, Huang DB, Hauenstein AV, Fusco AJ, Zhong X, Vu D, Schröfelbauer B, Kim Y, Hoffmann A, Verma IM, Ghosh G, Huxford T. A structural basis for IκB kinase 2 activation via oligomerization-dependent trans auto-phosphorylation. PLoS Biol. 2013;11(6):e1001581.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Polley S, Passos DO, Huang DB, Mulero MC, Mazumder A, Biswas T, Verma IM, Lyumkis D, Ghosh G. Structural basis for the activation of IKK1/±. Cell Rep. 2016;17:1907–14.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D, Randow F, Wakatsuki S, Dikic I. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell. 2009;136:1098–109.CrossRefPubMedGoogle Scholar
  28. Régnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M. Identification and characterization of an IκB kinase. Cell. 1997;90:373–83.CrossRefPubMedGoogle Scholar
  29. Reid MA, Lowman XH, Pan M, Tran TQ, Warmoes MO, Ishak Gabra MB, Yang Y, Locasale JW, Kong M. IKK″ promotes metabolic adaptation to glutamine deprivation via phosphorylation and inhibition of PFKFB3. Genes Dev. 2016;30:1837–51.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Richardson RJ, Hammond NL, Coulombe PA, Saloranta C, Nousiainen HO, Salonen R, Berry A, Hanley N, Headon D, Karikoski R, Dixon MJ. Periderm prevents pathological epithelial adhesions during embryogenesis. J Clin Invest. 2014;124:3891–900.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Rothwarf DM, Zandi E, Natoli G, Karin M. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature. 1998;395:297–300.CrossRefPubMedGoogle Scholar
  32. Rushe M, Silvian L, Bixler S, Chen LL, Cheung A, Bowes S, Cuervo H, Berkowitz S, Zheng T, Guckian K, Pellegrini M, Lugovskoy A. Structure of a NEMO/IKK-associating domain reveals architecture of the interaction site. Structure. 2008;16:798–808.CrossRefPubMedGoogle Scholar
  33. Sasaki Y, Iwai K. Roles of the NF-κB pathway in B-Lymphocyte biology. Curr Top Microbiol Immunol. 2016;393:177–209.PubMedGoogle Scholar
  34. Schröfelbauer B, Polley S, Behar M, Ghosh G, Hoffmann A. NEMO ensures signaling specificity of the pleiotropic IKKβ by directing its kinase activity toward IκBα. Mol Cell. 2012;47:111–21.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Senegas A, Gautheron J, Gentil-Dit-Maurin A, Courtois G. IKK-related genetic diseases: probing NF-κB functions in humans and other matters. Cell Mol Life Sci. 2015;72:1275–87.CrossRefPubMedGoogle Scholar
  36. Sun SC. The noncanonical NF-κB pathway. Immunol Rev. 2012;246:125–40.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat Cell Biol. 2009;11:123–32.CrossRefPubMedGoogle Scholar
  38. Whiteside ST, Israël A. IκB proteins: structure, function and regulation. Semin Cancer Biol. 1997;8:75–82.CrossRefPubMedGoogle Scholar
  39. Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science. 1997;278:866–9.CrossRefPubMedGoogle Scholar
  40. Wu ZH, Wong ET, Shi Y, Niu J, Chen Z, Miyamoto S, Tergaonkar V. ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress. Mol Cell. 2010;40:75–86.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Xu G, Lo YC, Li Q, Napolitano G, Wu X, Jiang X, Dreano M, Karin M, Wu H. Crystal structure of inhibitor of IκB kinase β. Nature. 2011;472:325–30.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F, Kirk HE, Kay RJ, Israël A. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell. 1998;93:1231–40.CrossRefPubMedGoogle Scholar
  43. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell. 1997;91:243–52.CrossRefPubMedGoogle Scholar
  44. Zhao T, Yang L, Sun Q, Arguello M, Ballard DW, Hiscott J, Lin R. The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways. Nat Immunol. 2007;8:592–600.CrossRefPubMedGoogle Scholar
  45. Zhu X, Fang L, Wang D, Yang Y, Chen J, Ye X, Foda MF, Xiao S. Porcine deltacoronavirus nsp5 inhibits interferon-″ production through the cleavage of NEMO. Virology. 2016;502:33–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.INSERM U1038/BGE/BIG, CEA GrenobleGrenobleFrance