Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Salman Tamaddon-Jahromi
  • Venkateswarlu KanamarlapudiEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101963


Historical Background

The ADP-ribosylation factor (ARF) family of small GTP-binding proteins are ubiquitously expressed and involved in many cellular events such as cell adhesion, cell migration, neurite outgrowth, cell secretion, and endocytosis (D’Souza-Schorey and Chavrier 2006). In mammals, the ARF family consists of six members (ARFs 1–6), and ARFs 1–5 function at the Golgi whereas ARF6 regulates cellular events at the plasma membrane (Donaldson and Jackson 2011). Since ARFs belong to the Ras superfamily of GTPases, they act as molecular switches by cycling between inactive GDP-bound and active GTP-bound forms. They depend on guanine exchange factors (GEFs) for activation and GTPase-activating proteins (GAPs) for...

This is a preview of subscription content, log in to check access.


  1. Bendor J, Lizardi-Ortiz JE, Westphalen RI, Brandstetter M, Hemmings Jr HC, Sulzer D, et al. AGAP1/AP-3-dependent endocytic recycling of M5 muscarinic receptors promotes dopamine release. EMBO J. 2010;29:2813–26.  https://doi.org/10.1038/emboj.2010.154.CrossRefPubMedPubMedCentralGoogle Scholar
  2. D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol. 2006;7:347–58.PubMedCrossRefGoogle Scholar
  3. Donaldson JG, Honda A. Localization and function of Arf family GTPases. Biochem Soc Trans. 2005;33:639–42.  https://doi.org/10.1042/bst0330639.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol. 2011;12:362–75.  https://doi.org/10.1038/nrm3117.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Gan TQ, Tang RX, He RQ, Dang YW, Xie Y, Chen G. Upregulated MiR-1269 in hepatocellular carcinoma and its clinical significance. Int J Clin Exp Med. 2015;8:714–21.PubMedPubMedCentralGoogle Scholar
  6. Harvey RC, Mullighan CG, Wang X, Dobbin KK, Davidson GS, Bedrick EJ, et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood. 2010;116:4874–84.  https://doi.org/10.1182/blood-2009-08-239681.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 2009;10:682–96.  https://doi.org/10.1038/nrm2774.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.  https://doi.org/10.1146/annurev.cellbio.21.020604.150721.CrossRefGoogle Scholar
  9. Kahn RA, Bruford E, Inoue H, Logsdon Jr JM, Nie Z, Premont RT, et al. Consensus nomenclature for the human ArfGAP domain-containing proteins. J Cell Biol. 2008;182:1039–44.  https://doi.org/10.1083/jcb.200806041.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Luo R, Akpan IO, Hayashi R, Sramko M, Barr V, Shiba Y, et al. GTP-binding protein-like domain of AGAP1 is protein binding site that allosterically regulates ArfGAP protein catalytic activity. J Biol Chem. 2012;287:17176–85.  https://doi.org/10.1074/jbc.M111.334458.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Luo R, Chen PW, Wagenbach M, Jian X, Jenkins L, Wordeman L, et al. Direct functional interaction of the kinesin-13 family membrane kinesin like protein 2A (Kif2A) and Arf GAP with GTP-binding protein-like, ankyrin repeats and PH domains1 (AGAP1). J Biol Chem. 2016.  https://doi.org/10.1074/jbc.M116.732479.
  12. McMichael G, Bainbridge MN, Haan E, Corbett M, Gardner A, Thompson S, et al. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry. 2015;20:176–82.  https://doi.org/10.1038/mp.2014.189.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Meurer S, Pioch S, Wagner K, Muller-Esterl W, Gross S. AGAP1, a novel binding partner of nitric oxide-sensitive guanylyl cyclase. J Biol Chem. 2004;279:49346–54.  https://doi.org/10.1074/jbc.M410565200.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Nie Z, Stanley KT, Stauffer S, Jacques KM, Hirsch DS, Takei J, et al. AGAP1, an endosome-associated, phosphoinositide-dependent ADP-ribosylation factor GTPase-activating protein that affects actin cytoskeleton. J Biol Chem. 2002;277:48965–75.  https://doi.org/10.1074/jbc.M202969200.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Nie Z, Boehm M, Boja ES, Vass WC, Bonifacino JS, Fales HM, et al. Specific regulation of the adaptor protein complex AP-3 by the Arf GAP AGAP1. Dev Cell. 2003;5:513–21.PubMedCrossRefGoogle Scholar
  16. Nie Z, Fei J, Premont RT, Randazzo PA. The Arf GAPs AGAP1 and AGAP2 distinguish between the adaptor protein complexes AP-1 and AP-3. J Cell Sci. 2005;118:3555–66.  https://doi.org/10.1242/jcs.02486.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Robinson MS, Bonifacino JS. Adaptor-related proteins. Curr Opin Cell Biol. 2001;13:444–53.PubMedCrossRefGoogle Scholar
  18. Saraste M, Hyvonen M. Pleckstrin homology domains: a fact file. Curr Opin Struct Biol. 1995;5:403–8.PubMedCrossRefGoogle Scholar
  19. Steffan JJ, Snider JL, Skalli O, Welbourne T, Cardelli JA. Na+/H+ exchangers and RhoA regulate acidic extracellular pH-induced lysosome trafficking in prostate cancer cells. Traffic. 2009;10:737–53.  https://doi.org/10.1111/j.1600-0854.2009.00904.x.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Wassink TH, Piven J, Vieland VJ, Jenkins L, Frantz R, Bartlett CW, et al. Evaluation of the chromosome 2q37.3 gene CENTG2 as an autism susceptibility gene. Am J Med Genet B Neuropsychiatr Genet. 2005;136B:36–44.  https://doi.org/10.1002/ajmg.b.30180.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Yan J, Wen W, Xu W, Long J-f, Adams ME, Froehner SC, et al. Structure of the split PH domain and distinct lipid-binding properties of the PH–PDZ supramodule of α-syntrophin. EMBO J. 2005;24:3985–95.  https://doi.org/10.1038/sj.emboj.7600858.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Salman Tamaddon-Jahromi
    • 1
  • Venkateswarlu Kanamarlapudi
    • 1
    Email author
  1. 1.Institute of Life Science 1, School of MedicineSwansea UniversitySwanseaUK