Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Danielle M. DefriesEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101958


Historical Background

The need for a specific transporter to mediate cellular glucose transport across the lipophilic cell membrane was first proposed in 1948 based on the observed saturable and isomer-specific nature of glucose uptake in human erythrocytes (LeFevre 1948). Continued work in this area led to the discovery an integral membrane protein with the ability to mediate glucose transport across the erythrocyte (Kasahara and Hinkle 1977). Cloning of this transporter in the HepG2 human hepatoma cell line in 1985 (Mueckler et al. 1985) and rat brain in 1986 (Birnbaum et al. 1986) led to the name “HepG2/rat brain/human erythrocyte transporter.” cDNA cloning of a glucose transporter abundantly expressed in the liver (and to a lesser extent in the kidney and intestine) occurred several years later (Fukumoto et al. 1988), and in the following year the first report of cDNA cloning of the glucose transporter predominantly expressed in...

This is a preview of subscription content, log in to check access.


  1. Birnbaum MJ, Haspel HC, Rosen OM. Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc Natl Acad Sci U S A. 1986;83:5784–8.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis. 2012;19:358–71.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, et al. Crystal structure of the human glucose transporter GLUT1. Nature. 2014;510:121–5.PubMedCrossRefGoogle Scholar
  4. Fukumoto H, Seino S, Imura H, Seino Y, Eddy RL, Fukushima Y, et al. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc Natl Acad Sci U S A. 1988;85:5434–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. James DE, Strube M, Mueckler M. Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature. 1989;338:83–7.PubMedCrossRefGoogle Scholar
  6. Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, et al. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab. 2002;282:E974–6.PubMedCrossRefGoogle Scholar
  7. Kasahara M, Hinkle PC. Reconstitution and purification of the d-glucose transporter from human erythrocytes. J Biol Chem. 1977;252:7384–90.PubMedGoogle Scholar
  8. Klepper J. Glucose transporter deficiency syndrome (GLUT1DS) and the ketogenic diet. Epilepsia. 2008;49 Suppl 8:46–9.PubMedCrossRefGoogle Scholar
  9. Klepper J, Leiendecker B. GLUT1 deficiency syndrome – 2007 update. Dev Med Child Neurol. 2007;49:707–16.PubMedCrossRefGoogle Scholar
  10. LeFevre PG. Evidence of active transfer of certain non-electrolytes across the human red cell membrane. J Gen Physiol. 1948;31:505–27.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Long W, Cheeseman CI. Structure of, and functional insight into the GLUT family of membrane transporters. Cell Health Cytoskeleton. 2015;7. doi:10.2147/CHC.S60484.Google Scholar
  12. Marger MD, Saier Jr MH. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 1993;18:13–20.PubMedCrossRefGoogle Scholar
  13. Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, et al. Sequence and structure of a human glucose transporter. Science. 1985;229:941–5.PubMedCrossRefGoogle Scholar
  14. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93:993–1017.PubMedCrossRefGoogle Scholar
  15. Sakamoto K, Holman GD. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab. 2008;295:E29–37.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Stringer DM, Zahradka P, Taylor CG. Glucose transporters: cellular links to hyperglycemia in insulin resistance and diabetes. Nutr Rev. 2015;73:140–54.PubMedCrossRefGoogle Scholar
  17. Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia. 2015;58:221–32.PubMedCrossRefGoogle Scholar
  18. Wu X, Freeze HH. GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms. Genomics. 2002;80:553–7.PubMedCrossRefGoogle Scholar
  19. Zaid H, Antonescu CN, Randhawa VK, Klip A. Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J. 2008;413:201–15.PubMedCrossRefGoogle Scholar
  20. Zhao FQ, Keating AF. Functional properties and genomics of glucose transporters. Curr Genomics. 2007;8:113–28.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Kinesiology and Applied HealthUniversity of WinnipegWinnipegCanada