Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Adiponectin

  • Chiara Caselli
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101952

Synonyms

Historical Background

Adipose tissue is considered an endocrine organ, secreting a number of bioactive molecules called adipokines. Due to the development of obesity and consequent macrophage infiltration, adipose tissue increases the secretion of these bioactive mediators, including adiponectin, resistin, leptin, and plasminogen activator inhibitor-1 (PAI-1), that are involved in many biological processes, such as metabolism, inflammation, and vascular diseases. Adiponectin, the major adipocyte-secreted protein, links visceral adiposity with insulin resistance and atherosclerosis. Unlike other adipokines, adiponectin circulating concentrations are inversely proportional to adiposity. During the past 20 years, several studies...

This is a preview of subscription content, log in to check access.

References

  1. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7(8):947–53.PubMedCrossRefGoogle Scholar
  2. Caselli C, D’Amico A, Cabiati M, Prescimone T, Del Ry S, Giannessi D. Back to the heart: the protective role of adiponectin. Pharmacol Res. 2014;82:9–20.  https://doi.org/10.1016/j.phrs.2014.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chen MB, McAinch AJ, Macaulay SL, Castelli LA, O’brien PE, Dixon JB, Cameron-Smith D, Kemp BE, Steinberg GR. Impaired activation of AMP-kinase and fatty acid oxidation by globular adiponectin in cultured human skeletal muscle of obese type 2 diabetics. J Clin Endocrinol Metab. 2005;90(6):3665–72.PubMedCrossRefGoogle Scholar
  4. Fu Y, Luo N, Klein RL, Garvey WT. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res. 2005;46(7):1369–79.PubMedCrossRefGoogle Scholar
  5. Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, Bui HH, Davis KE, Bikman BT, Halberg N, Rutkowski JM, Wade MR, Tenorio VM, Kuo MS, Brozinick JT, Zhang BB, Birnbaum MJ, Summers SA, Scherer PE. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med. 2011;17(1):55–63.  https://doi.org/10.1038/nm.2277.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, Yamaguchi M, Namiki S, Nakayama R, Tabata M, Ogata H, Kubota N, Takamoto I, Hayashi YK, Yamauchi N, Waki H, Fukayama M, Nishino I, Tokuyama K, Ueki K, Oike Y, Ishii S, Hirose K, Shimizu T, Touhara K, Kadowaki T. Adiponectin and AdipoR1 regulate PGC-1a and mitochondria by Ca2+ and AMPK/SIRT1. Nature. 2010;464(7293):1313–9.  https://doi.org/10.1038/nature08991.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Kishida K, Funahashi T, Shimomura I. Adiponectin as a routine clinical biomarker. Best Pract Res Clin Endocrinol Metab. 2014;28(1):119–30.  https://doi.org/10.1016/j.beem.2013.08.006.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Liu M, Xiang R, Wilk SA, Zhang N, Sloane LB, Azarnoush K, Zhou L, Chen H, Xiang G, Walter CA, Austad SN, Musi N, DeFronzo RA, Asmis R, Scherer PE, Dong LQ, Liu F. Fat-specific DsbA-L overexpression promotes adiponectin multimerization and protects mice from diet-induced obesity and insulin resistance. Diabetes. 2012;61(11):2776–86.  https://doi.org/10.2337/db12-0169.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Okada-Iwabu M, Yamauchi T, Iwabu M, Honma T, Hamagami K, Matsuda K, Yamaguchi M, Tanabe H, Kimura-Someya T, Shirouzu M, Ogata H, Tokuyama K, Ueki K, Nagano T, Tanaka A, Yokoyama S, Kadowaki T. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature. 2013;503(7477):493–9.  https://doi.org/10.1038/nature12656.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999;100:2473–6.PubMedCrossRefGoogle Scholar
  11. Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol. 2016;8(2):101–9.  https://doi.org/10.1093/jmcb/mjw014.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Turer AT, Scherer PE. Adiponectin: mechanistic insights and clinical implications. Diabetologia. 2012;55(9):2319–26.  https://doi.org/10.1007/s00125-012-2598-x.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Wang C, Xin X, Xiang R, Ramos FJ, Liu M, Lee HJ, Chen H, Mao X, Kikani CK, Liu F, Dong LQ. Yin-Yang regulation of adiponectin signalling by APPL isoforms in muscle cells. J Biol Chem. 2009;284(46):31608–15.  https://doi.org/10.1074/jbc.M109.010355.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes. 2003;52(6):1355–63.PubMedCrossRefGoogle Scholar
  15. Xin X, Zhou L, Reyes CM, Liu F, Dong LQ. APPL1 mediates adiponectin stimulated p38 MAPK activation by scaffolding the TAK1-MKK3-p38 MAPK pathway. Am J Physiol Endocrinol Metab. 2011;300(1):E103–10.  https://doi.org/10.1152/ajpendo.00427.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Yamauchi T, Kadowaki T. Adiponectin receptor as a key player in healthy longevity and obesity-related diseases. Cell Metab. 2013;17(2):185–96.  https://doi.org/10.1016/j.cmet.2013.01.001.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762–9.PubMedCrossRefGoogle Scholar
  18. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8(11):1288–95.PubMedCrossRefGoogle Scholar
  19. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7(8):941–6.PubMedCrossRefGoogle Scholar
  20. Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, Okada-Iwabu M, Kawamoto S, Kubota N, Kubota T, Ito Y, Kamon J, Tsuchida A, Kumagai K, Kozono H, Hada Y, Ogata H, Tokuyama K, Tsunoda M, Ide T, Murakami K, Awazawa M, Takamoto I, Froguel P, Hara K, Tobe K, Nagai R, Ueki K, Kadowaki T. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007;13(3):332–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratory of Cardiovascular BiochemistryInstitute of Clinical Physiology, National Research Council (IFC-CNR)PisaItaly