Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Thioredoxin (TXN)

  • Eva-Maria Hanschmann
  • Carsten BerndtEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101939


Historical Background

The name thioredoxin (Trx) was first introduced by Peter Reichard for the enzyme providing electrons needed for the enzymatic reaction of ribonucleotide reductase, in 1964 (Buchanan et al. 2012). However, Trxs have been described in yeast before, using different names: fraction C of the sulfate-reducing system and enzyme II of the enzymatic system reducing L-methionine sulfoxide. E. coli Trx1 was sequenced in 1968, revealing the characteristic Cys-Gly-Pro-Cys active site motif. In 1975, the crystal structure of oxidized E. coli Trx1 was solved, describing the characteristic Trx fold for the first time. The role of essential plant proteins for the process of photosynthesis, identified as Trxs in 1976–1978, is one of the first descriptions of biological redox regulation (Buchanan et al. 2012). All these mentioned...

This is a preview of subscription content, log in to check access.


  1. Benhar M. Nitric oxide and the thioredoxin system: a complex interplay in redox regulation. Biochim Biophys Acta. 2015;1850(12):2476–84.  https://doi.org/10.1016/j.bbagen.2015.09.010.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Berndt C, Lillig CH. Thioredoxins and glutaredoxins. Functions and metal ion interactions. In: Sigel A, Sigel H, RKO S, editors. Metallothioneins and related chelators, Metal ions in life sciences5 Cambridge, UK: Royal Society of Chemistry; 2009. p. 413–39.Google Scholar
  3. Berndt C, Schwenn J-D, Lillig CH. The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity. Chem Sci. 2015;6(12):7049–58.  https://doi.org/10.1039/C5SC01501D.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Buchanan BB, Holmgren A, Jacquot J-P, Scheibe R. Fifty years in the thioredoxin field and a bountiful harvest. Biochim Biophys Acta. 2012;1820(11):1822–9.  https://doi.org/10.1016/j.bbagen.2012.07.006.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Collet J-F, D’Souza JC, Jakob U, Bardwell JCA. Thioredoxin 2, an oxidative stress-induced protein, contains a high affinity zinc binding site. J Biol Chem. 2003;278(46):45325–32.  https://doi.org/10.1074/jbc.M307818200.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Czech MP, Lawrence JC, Lynn WS. Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin. Proc Natl Acad Sci U S A. 1974;71(10):4173–7.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Deponte M, Lillig CH. Enzymatic control of cysteinyl thiol switches in proteins. Biol Chem. 2015;396(5):401–13.  https://doi.org/10.1515/hsz-2014-0280.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Eklund H, Cambillau C, Sjöberg BM, Holmgren A, Jörnvall H, Höög JO, et al. Conformational and functional similarities between glutaredoxin and thioredoxins. EMBO J. 1984;3(7):1443–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Hanschmann E-M, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal. 2013;19(13):1539–605.  https://doi.org/10.1089/ars.2012.4599.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hashemy SI, Holmgren A. Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues. J Biol Chem. 2008;283(32):21890–8.  https://doi.org/10.1074/jbc.M801047200.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K, et al. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem. 1999;274(39):27891–7.  https://doi.org/10.1074/jbc.274.39.27891.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ingles-Prieto A, Ibarra-Molero B, Delgado-Delgado A, Perez-Jimenez R, Fernandez JM, Gaucher EA, et al. Conservation of protein structure over four billion years. Struct Lond Engl 1993. 2013;21(9):1690–7.  https://doi.org/10.1016/j.str.2013.06.020.CrossRefGoogle Scholar
  13. Meyer Y, Belin C, Delorme-Hinoux V, Reichheld J-P, Riondet C. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal. 2012;17(8):1124–60.  https://doi.org/10.1089/ars.2011.4327.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J. 2011;439(3):479–85.  https://doi.org/10.1042/BJ20110841.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Netto LES, Antunes F. The roles of peroxiredoxin and thioredoxin in hydrogen peroxide sensing and in signal transduction. Mol Cells. 2016;39(1):65–71.  https://doi.org/10.14348/molcells.2016.2349.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Palde PB, Carroll KS. A universal entropy-driven mechanism for thioredoxin-target recognition. Proc Natl Acad Sci U S A. 2015;112(26):7960–5.  https://doi.org/10.1073/pnas.1504376112.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Tao L, Jiao X, Gao E, Lau WB, Yuan Y, Lopez B, et al. Nitrative inactivation of thioredoxin-1 and its role in postischemic myocardial apoptosis. Circulation. 2006;114(13):1395–402.  https://doi.org/10.1161/CIRCULATIONAHA.106.625061.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Vazquez DS, Delfino JM, Santos J. Thioredoxin from Escherichia coli as a role model of molecular recognition, folding, dynamics and function. Protein Pept Lett. 2015;22(9):801–15.  https://doi.org/10.2174/0929866522666150707114309.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Watson WH, Pohl J, Montfort WR, Stuchlik O, Reed MS, Powis G, et al. Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. J Biol Chem. 2003;278(35):33408–15.  https://doi.org/10.1074/jbc.M211107200.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Xu Z, Zhong L. New insights into the posttranslational regulation of human cytosolic thioredoxin by S-palmitoylation. Biochem Biophys Res Commun. 2015;460(4):949–56.  https://doi.org/10.1016/j.bbrc.2015.03.132.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of NeurologyMedical Faculty, Heinrich-Heine University DüsseldorfDüsseldorfGermany