Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Johannes OberwinklerEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101920


Historical Background

In 1969, a Drosophila melanogaster mutant was described that exhibits a defect in the response of photoreceptor cells to sustained light stimulation of moderate to high intensities, which was later named “transient receptor potential” or trp. The cDNA of the mutated gene was cloned in 1989 and subsequently shown, by patch-clamping Drosophila photoreceptor cells, to code for ligand-gated and Ca2+-permeable ion channels. As the first identified member of such a class of ion channels, up to then completely elusive, these discoveries triggered an intense search for mammalian homologues of the Drosophila TRP channel. After the initial, quick discovery of the seven members of the TRPC (C for canonical or classical) subfamily (displaying the highest homology with the original Drosophila...

This is a preview of subscription content, log in to check access.


  1. Alptekin M, Eroglu S, Tutar E, Sencan S, Geyik MA, Ulasli M, et al. Gene expressions of TRP channels in glioblastoma multiforme and relation with survival. Tumour Biol. 2015;36:9209–13.  https://doi.org/10.1007/s13277-015-3577-x.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aoki R, Yokoyama U, Ichikawa Y, Taguri M, Kumagaya S, Ishiwata R, et al. Decreased serum osmolality promotes ductus arteriosus constriction. Cardiovasc Res. 2014;104:326–36.  https://doi.org/10.1093/cvr/cvu199.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Badheka D, Borbiro I, Rohacs T. Transient receptor potential melastatin 3 is a phosphoinositide-dependent ion channel. J Gen Physiol. 2015;146:65–77.  https://doi.org/10.1085/jgp.201411336.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bennett TM, Mackay DS, Siegfried CJ, Shiels A. Mutation of the melastatin-related cation channel, TRPM3, underlies inherited cataract and glaucoma. PLoS ONE. 2014;9:e104000.  https://doi.org/10.1371/journal.pone.0104000.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Biasiotta A, D'Arcangelo D, Passarelli F, Nicodemi EM, Facchiano A. Ion channels expression and function are strongly modified in solid tumors and vascular malformations. J Transl Med. 2016;14:285.  https://doi.org/10.1186/s12967-016-1038-y.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen L, Chen W, Qian X, Fang Y, Zhu N. Liquiritigenin alleviates mechanical and cold hyperalgesia in a rat neuropathic pain model. Sci Rep. 2014;4:5676.  https://doi.org/10.1038/srep05676.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ciurtin C, Majeed Y, Naylor J, Sukumar P, English AA, Emery P, et al. TRPM3 channel stimulated by pregnenolone sulphate in synovial fibroblasts and negatively coupled to hyaluronan. BMC Musculoskelet Disord. 2010;11:111.  https://doi.org/10.1186/1471-2474-11-111.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Doecke JD, Wang Y, Baggerly K. Co-localized genomic regulation of miRNA and mRNA via DNA methylation affects survival in multiple tumor types. Cancer Genet. 2016;209:463–73.  https://doi.org/10.1016/j.cancergen.2016.09.001.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Drews A, Mohr F, Rizun O, Wagner TFJ, Dembla S, Rudolph S, et al. Structural requirements of steroidal agonists of transient receptor potential melastatin 3 (TRPM3) cation channels. Br J Pharmacol. 2014;171:1019–32.  https://doi.org/10.1111/bph.12521.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Frühwald J, Camacho Londoño J, Dembla S, Mannebach S, Lis A, Drews A, et al. Alternative splicing of a protein domain indispensable for function of transient receptor potential melastatin 3 (TRPM3) ion channels. J Biol Chem. 2012;287:36663–72.  https://doi.org/10.1074/jbc.M112.396663.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem. 2003;278:21493–501.  https://doi.org/10.1074/jbc.M300945200.CrossRefGoogle Scholar
  12. Grimm C, Kraft R, Schultz G, Harteneck C. Activation of the melastatin-related cation channel TRPM3 by D-erythro-sphingosine [corrected]. Mol Pharmacol. 2005;67:798–805.  https://doi.org/10.1124/mol.104.006734.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hall DP, Cost NG, Hegde S, Kellner E, Mikhaylova O, Stratton Y, et al. TRPM3 and miR-204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma. Cancer Cell. 2014;26:738–53.  https://doi.org/10.1016/j.ccell.2014.09.015.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hardie RC. A brief history of trp: commentary and personal perspective. Pflugers Archiv. 2011;461:493–8.  https://doi.org/10.1007/s00424-011-0922-9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Held K, Voets T, Vriens J. TRPM3 in temperature sensing and beyond. Temperature (Austin). 2015a;2:201–13.  https://doi.org/10.4161/23328940.2014.988524.CrossRefGoogle Scholar
  16. Held K, Kichko T, De Clercq K, Klaassen H, Van Bree R, Vanherck J-C, et al. Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release. Proc Natl Acad Sci USA. 2015b;112:E1363–72.  https://doi.org/10.1073/pnas.1419845112.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Holakovska B, Grycova L, Jirku M, Sulc M, Bumba L, Teisinger J. Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel. J Biol Chem. 2012;287:16645–55.  https://doi.org/10.1074/jbc.M112.350686.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Holendova B, Grycova L, Jirku M, Teisinger J. PtdIns(4,5)P2 interacts with CaM binding domains on TRPM3 N-terminus. Channels (Austin). 2012;6:479–82.  https://doi.org/10.4161/chan.22177.CrossRefGoogle Scholar
  19. Hughes S, Pothecary CA, Jagannath A, Foster RG, Hankins MW, Peirson SN. Profound defects in pupillary responses to light in TRPM-channel null mice: a role for TRPM channels in non-image-forming photoreception. Eur J Neurosci. 2012;35:34–43.  https://doi.org/10.1111/j.1460-9568.2011.07944.x.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Klose C, Straub I, Riehle M, Ranta F, Krautwurst D, Ullrich S, et al. Fenamates as TRP channel blockers: mefenamic acid selectively blocks TRPM3. Br J Pharmacol. 2011;162:1757–69.  https://doi.org/10.1111/j.1476-5381.2010.01186.x.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Krügel U, Straub I, Beckmann H, Schaefer M. Primidone inhibits TRPM3 and attenuates thermal nociception in vivo. Pain. 2017.  https://doi.org/10.1097/j.pain.0000000000000846.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lee N, Chen J, Sun L, Wu S, Gray KR, Rich A, et al. Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J Biol Chem. 2003;278:20890–7.  https://doi.org/10.1074/jbc.M211232200.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Leitner MG, Michel N, Behrendt M, Dierich M, Dembla S, Wilke BU, et al. Direct modulation of TRPM4 and TRPM3 channels by the phospholipase C inhibitor U73122. Br J Pharmacol. 2016;173:2555–69.  https://doi.org/10.1111/bph.13538.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Majeed Y, Tumova S, Green BL, Seymour VAL, Woods DM, Agarwal AK, et al. Pregnenolone sulphate-independent inhibition of TRPM3 channels by progesterone. Cell Calcium. 2012;51:1–11.  https://doi.org/10.1016/j.ceca.2011.09.005.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Marabita F, Islam MS. Expression of transient receptor potential channels in the purified human pancreatic β-cells. Pancreas. 2017;46:97–101.  https://doi.org/10.1097/MPA.0000000000000685.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Marshall-Gradisnik S, Johnston S, Chacko A, Nguyen T, Smith P, Staines D. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Int Med Res. 2016;44:1381–94.  https://doi.org/10.1177/0300060516671622.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Mayer SI, Müller I, Mannebach S, Endo T, Thiel G. Signal transduction of pregnenolone sulfate in insulinoma cells: activation of Egr-1 expression involving TRPM3, voltage-gated calcium channels, ERK, and ternary complex factors. J Biol Chem. 2011;286:10084–96.  https://doi.org/10.1074/jbc.M110.202697.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Minke B. The history of the Drosophila TRP channel: the birth of a new channel superfamily. J Neurogenet. 2010;24:216–33.  https://doi.org/10.3109/01677063.2010.514369.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Montell C. The history of TRP channels, a commentary and reflection. Pflugers Archiv. 2011;461:499–506.  https://doi.org/10.1007/s00424-010-0920-3.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, et al. A unified nomenclature for the superfamily of TRP cation channels. Mol Cell. 2002;9:229–31.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Narayanankutty A, Palma-Lara I, Pavón-Romero G, Pérez-Rubio G, Camarena Á, Teran LM, et al. Association of TRPM3 polymorphism (rs10780946) and aspirin-exacerbated respiratory disease (AERD). Lung. 2016;194:273–9.  https://doi.org/10.1007/s00408-016-9852-9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Naylor J, Li J, Milligan CJ, Zeng F, Sukumar P, Hou B, et al. Pregnenolone sulphate- and cholesterol-regulated TRPM3 channels coupled to vascular smooth muscle secretion and contraction. Circ Res. 2010;106:1507–15.  https://doi.org/10.1161/CIRCRESAHA.110.219329.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Oberwinkler J, Philipp SE. TRPM3. Handb Exp Pharmacol. 2014;222:427–59.  https://doi.org/10.1007/978-3-642-54215-2_17.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE. Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem. 2005;280:22540–8.  https://doi.org/10.1074/jbc.M503092200.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rai MF, Schmidt EJ, Hashimoto S, Cheverud JM, Sandell LJ. Genetic loci that regulate ectopic calcification in response to knee trauma in LG/J by SM/J advanced intercross mice. J Orthop Res. 2015;33:1412–23.  https://doi.org/10.1002/jor.22944.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Straub I, Krügel U, Mohr F, Teichert J, Rizun O, Konrad M, et al. Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol Pharmacol. 2013;84:736–50.  https://doi.org/10.1124/mol.113.086843.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Suzuki H, Sasaki E, Nakagawa A, Muraki Y, Hatano N, Muraki K. Diclofenac, a nonsteroidal anti-inflammatory drug, is an antagonist of human TRPM3 isoforms. Pharmacol Res Perspect. 2016;4:e00232.  https://doi.org/10.1002/prp2.232.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Thiel G, Müller I, Rössler OG. Signal transduction via TRPM3 channels in pancreatic β-cells. J Mol Endocrinol. 2013;50:R75–83.  https://doi.org/10.1530/JME-12-0237.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tóth BI, Konrad M, Ghosh D, Mohr F, Halaszovich CR, Leitner MG, et al. Regulation of the transient receptor potential channel TRPM3 by phosphoinositides. J Gen Physiol. 2015;146:51–63.  https://doi.org/10.1085/jgp.201411339.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Uchida K, Demirkhanyan L, Asuthkar S, Cohen A, Tominaga M, Zakharian E. Stimulation-dependent gating of TRPM3 channel in planar lipid bilayers. FASEB J. 2016;30:1306–16.  https://doi.org/10.1096/fj.15-281576.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, et al. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron. 2011;70:482–94.  https://doi.org/10.1016/j.neuron.2011.02.051.CrossRefGoogle Scholar
  42. Vriens J, Held K, Janssens A, Tóth BI, Kerselaers S, Nilius B, et al. Opening of an alternative ion permeation pathway in a nociceptor TRP channel. Nat Chem Biol. 2014;10:188–95.  https://doi.org/10.1038/nchembio.1428.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wagner TFJ, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, et al. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic β cells. Nat Cell Biol. 2008;10:1421–30.  https://doi.org/10.1038/ncb1801.CrossRefGoogle Scholar
  44. Wagner TFJ, Drews A, Loch S, Mohr F, Philipp SE, Lambert S, et al. TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Archiv. 2010;460:755–65.  https://doi.org/10.1007/s00424-010-0838-9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institut für Physiologie und PathophysiologiePhilipps-Universität MarburgMarburgGermany