Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Cecilia PoderosoEmail author
  • Ana F. Castillo
  • Pablo G. Mele
  • Paula M. Maloberti
  • Ernesto J. Podestá
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101896


Historical Background

For many years now, several studies in steroid-producing systems have led to the postulation of an induced stimulatory protein originally designated as the “labile protein factor,” since after stimulation with ACTH in the presence of a protein synthesis inhibitor as cycloheximide (CHX), the rate of steroidogenesis rapidly returned to its unstimulated level (Haynes et al. 1959; Garren et al. 1965; Schulster et al. 1970).

Using two-dimension gel electrophoresis, one of the first papers in the matter identified a protein of 28,000 Da, present as different isoforms in hormone-stimulated adrenal cells but not in quiescent cells. Furthermore, 35S-methionine pulse-chase experiments showed that this protein is not produced from a preexisting one, even if protein synthesis is not inhibited (Krueger and Orme-Johnson 1983).

After that work, Pon, Hartigan, and Orme-Johnson showed in 1986 that...

This is a preview of subscription content, log in to check access.


  1. Albarel F, Perrin J, Jegaden M, Roucher-Boulez F, Reynaud R, Brue T, et al. Successful IVF pregnancy despite inadequate ovarian steroidogenesis due to congenital lipoid adrenal hyperplasia (CLAH): a case report. Hum Reprod. 2016.  https://doi.org/10.1093/humrep/dew239.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alberta JA, Epstein LF, Pon LA, Orme-Johnson NR. Mitochondrial localization of a phosphoprotein that rapidly accumulates in adrenal cortex cells exposed to adrenocorticotropic hormone or to cAMP. J Biol Chem. 1989;264:2368–72.PubMedPubMedCentralGoogle Scholar
  3. Arakane F, King SR, Du Y, Kallen CB, Walsh LP, Watari H, et al. Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J Biol Chem. 1997;272:32656–62.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arakane F, Sugawara T, Nishino H, Liu Z, Holt JA, Pain D, et al. Steroidogenic acute regulatory protein (StAR) retains activity in the absence of its mitochondrial import sequence: implications for the mechanism of StAR action. Proc Natl Acad Sci USA. 1996;93:13731–6.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baker BY, Epand RF, Epand RM, Miller WL. Cholesterol binding does not predict activity of the steroidogenic acute regulatory protein, StAR. J Biol Chem. 2007;282:10223–32.  https://doi.org/10.1074/jbc.M611221200.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bose HS, Baldwin MA, Miller WL. Incorrect folding of steroidogenic acute regulatory protein (StAR) in congenital lipoid adrenal hyperplasia. Biochemistry. 1998;37:9768–75.  https://doi.org/10.1021/bi980588a.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Castillo AF, Cornejo Maciel F, Castilla R, Duarte A, Maloberti P, Paz C, et al. cAMP increases mitochondrial cholesterol transport through the induction of arachidonic acid release inside this organelle in Leydig cells. FEBS J. 2006;273:5011–21.  https://doi.org/10.1111/j.1742-4658.2006.05496.x.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Castillo AF, Fan J, Papadopoulos V, Podesta EJ. Hormone-dependent expression of a steroidogenic acute regulatory protein natural antisense transcript in MA-10 mouse tumor Leydig cells. PLoS One. 2011;6:e22822.  https://doi.org/10.1371/journal.pone.0022822.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Clark BJ, Wells J, King SR, Stocco DM. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem. 1994;269:28314–22.PubMedPubMedCentralGoogle Scholar
  10. Cherradi N, Capponi AM. The acute regulation of mineralocorticoid biosynthesis: scenarios for the StAR system. Trends Endocrinol Metab. 1998;9:412–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Duarte A, Castillo AF, Castilla R, Maloberti P, Paz C, Podesta EJ, et al. An arachidonic acid generation/export system involved in the regulation of cholesterol transport in mitochondria of steroidogenic cells. FEBS Lett. 2007;581:4023–8.  https://doi.org/10.1016/j.febslet.2007.07.040.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Duarte A, Castillo AF, Podesta EJ, Poderoso C. Mitochondrial fusion and ERK activity regulate steroidogenic acute regulatory protein localization in mitochondria. PLoS One. 2014;9:e100387.  https://doi.org/10.1371/journal.pone.0100387.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Duarte A, Poderoso C, Cooke M, Soria G, Cornejo Maciel F, Gottifredi V, et al. Mitochondrial fusion is essential for steroid biosynthesis. PLoS One. 2012;7:e45829.  https://doi.org/10.1371/journal.pone.0045829.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fleury A, Mathieu AP, Ducharme L, Hales DB, LeHoux JG. Phosphorylation and function of the hamster adrenal steroidogenic acute regulatory protein (StAR). J Steroid Biochem Mol Biol. 2004;91:259–71.  https://doi.org/10.1016/j.jsbmb.2004.04.010.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Garren LD, Ney RL, Davis WW. Studies on the role of protein synthesis in the regulation of corticosterone production by adrenocorticotropic hormone in vivo. Proc Natl Acad Sci USA. 1965;53:1443–50.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Graham A. Mitochondrial regulation of macrophage cholesterol homeostasis. Free Radic Biol Med. 2015;89:982–92.  https://doi.org/10.1016/j.freeradbiomed.2015.08.010.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Granot Z, Kobiler O, Melamed-Book N, Eimerl S, Bahat A, Lu B, et al. Turnover of mitochondrial steroidogenic acute regulatory (StAR) protein by Lon protease: the unexpected effect of proteasome inhibitors. Mol Endocrinol. 2007;21:2164–77.  https://doi.org/10.1210/me.2005-0458.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gyles SL, Burns CJ, Whitehouse BJ, Sugden D, Marsh PJ, Persaud SJ, et al. ERKs regulate cyclic AMP-induced steroid synthesis through transcription of the steroidogenic acute regulatory (StAR) gene. J Biol Chem. 2001;276:34888–95.  https://doi.org/10.1074/jbc.M102063200.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hatano M, Migita T, Ohishi T, Shima Y, Ogawa Y, Morohashi KI, et al. SF-1 deficiency causes lipid accumulation in Leydig cells via suppression of STAR and CYP11A1. Endocrine. 2016;54:484–96.  https://doi.org/10.1007/s12020-016-1043-1.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Haynes Jr RC, Koritz SB, Peron FG. Influence of adenosine 3′,5′-monophosphate on corticoid production by rat adrenal glands. J Biol Chem. 1959;234:1421–3.PubMedPubMedCentralGoogle Scholar
  21. Huang Z, Ye J, Han L, Qiu W, Zhang H, Yu Y, et al. Identification of five novel STAR variants in ten Chinese patients with congenital lipoid adrenal hyperplasia. Steroids. 2016;108:85–91.  https://doi.org/10.1016/j.steroids.2016.01.016.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kaur J, Casas L, Bose HS. Lipoid congenital adrenal hyperplasia due to STAR mutations in a Caucasian patient. Endocrinol Diabetes Metab Case Rep. 2016;2016:150119.  https://doi.org/10.1530/EDM-15-0119.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kim CJ. Congenital lipoid adrenal hyperplasia. Ann Pediatr Endocrinol Metab. 2014;19:179–83.  https://doi.org/10.6065/apem.2014.19.4.179.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Krueger RJ, Orme-Johnson NR. Acute adrenocorticotropic hormone stimulation of adrenal corticosteroidogenesis. Discovery of a rapidly induced protein. J Biol Chem. 1983;258:10159–67.PubMedPubMedCentralGoogle Scholar
  25. Lavigne P, Najmanivich R, Lehoux JG. Mammalian StAR-related lipid transfer (START) domains with specificity for cholesterol: structural conservation and mechanism of reversible binding. Subcell Biochem. 2010;51:425–37.  https://doi.org/10.1007/978-90-481-8622-8_15.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lee H, Li Z, Silkov A, Fischer M, Petrey D, Honig B, et al. High-throughput computational structure-based characterization of protein families: START domains and implications for structural genomics. J Struct Funct Genom. 2010;11:51–9.  https://doi.org/10.1007/s10969-010-9086-7.CrossRefGoogle Scholar
  27. Lin D, Sugawara T, Strauss 3rd JF, Clark BJ, Stocco DM, Saenger P, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science. 1995;267:1828–31.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Maloberti P, Castilla R, Castillo F, Cornejo Maciel F, Mendez CF, Paz C, et al. Silencing the expression of mitochondrial acyl-CoA thioesterase I and acyl-CoA synthetase 4 inhibits hormone-induced steroidogenesis. FEBS J. 2005;272:1804–14.  https://doi.org/10.1111/j.1742-4658.2005.04616.x.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Manna PR, Jo Y, Stocco DM. Regulation of Leydig cell steroidogenesis by extracellular signal-regulated kinase 1/2: role of protein kinase A and protein kinase C signaling. J Endocrinol. 2007;193:53–63.  https://doi.org/10.1677/JOE-06-0201.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mele PG, Duarte A, Paz C, Capponi A, Podesta EJ. Role of intramitochondrial arachidonic acid and acyl-CoA synthetase 4 in angiotensin II-regulated aldosterone synthesis in NCI-H295R adrenocortical cell line. Endocrinology. 2012;153:3284–94.  https://doi.org/10.1210/en.2011-2108.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Men Y, Fan Y, Shen Y, Lu L, Kallen AN. The steroidogenic acute regulatory Protein (StAR) is regulated by the H19/let-7 axis. Endocrinology. 2017;158(2):402–9.  https://doi.org/10.1210/en.2016-1340.
  32. Mori Sequeiros Garcia M, Gorostizaga A, Brion L, Gonzalez-Calvar SI, Paz C. cAMP-activated Nr4a1 expression requires ERK activity and is modulated by MAPK phosphatase-1 in MA-10 Leydig cells. Mol Cell Endocrinol. 2015;408:45–52.  https://doi.org/10.1016/j.mce.2015.01.041.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Poderoso C, Converso DP, Maloberti P, Duarte A, Neuman I, Galli S, et al. A mitochondrial kinase complex is essential to mediate an ERK1/2-dependent phosphorylation of a key regulatory protein in steroid biosynthesis. PLoS One. 2008;3:e1443.  https://doi.org/10.1371/journal.pone.0001443.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Poderoso C, Maloberti P, Duarte A, Neuman I, Paz C, Cornejo Maciel F, et al. Hormonal activation of a kinase cascade localized at the mitochondria is required for StAR protein activity. Mol Cell Endocrinol. 2009;300:37–42.  https://doi.org/10.1016/j.mce.2008.10.009.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pon LA, Hartigan JA, Orme-Johnson NR. Acute ACTH regulation of adrenal corticosteroid biosynthesis. Rapid accumulation of a phosphoprotein. J Biol Chem. 1986;261:13309–16.PubMedPubMedCentralGoogle Scholar
  36. Privalle CT, Crivello JF, Jefcoate CR. Regulation of intramitochondrial cholesterol transfer to side-chain cleavage cytochrome P-450 in rat adrenal gland. Proc Natl Acad Sci USA. 1983;80:702–6.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Rone MB, Midzak AS, Issop L, Rammouz G, Jagannathan S, Fan J, et al. Identification of a dynamic mitochondrial protein complex driving cholesterol import, trafficking, and metabolism to steroid hormones. Mol Endocrinol. 2012;26:1868–82.  https://doi.org/10.1210/me.2012-1159.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schulster D, Tait SA, Tait JF, Mrotek J. Production of steroids by in vitro superfusion of endocrine tissue. 3. Corticosterone output from rat adrenals stimulated by adrenocorticotropin or cyclic 3′,5′-adenosine monophosphate and the inhibitory effect of cycloheximide. Endocrinology. 1970;86:487–502.  https://doi.org/10.1210/endo-86-3-487.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Simpson ER. Cholesterol side-chain cleavage, cytochrome P450, and the control of steroidogenesis. Mol Cell Endocrinol. 1979;13:213–27.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Stocco DM, Sodeman TC. The 30-kDa mitochondrial proteins induced by hormone stimulation in MA-10 mouse Leydig tumor cells are processed from larger precursors. J Biol Chem. 1991;266:19731–8.PubMedPubMedCentralGoogle Scholar
  41. Stocco DM, Wang X, Jo Y, Manna PR. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol. 2005;19:2647–59.  https://doi.org/10.1210/me.2004-0532.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Stone D, Hechter O. Studies on ACTH action in perfused bovine adrenals: the site of action of ACTH in corticosteroidogenesis. Arch Biochem Biophys. 1954;51:457–69.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Thorsell AG, Lee WH, Persson C, Siponen MI, Nilsson M, Busam RD, et al. Comparative structural analysis of lipid binding START domains. PLoS One. 2011;6:e19521.  https://doi.org/10.1371/journal.pone.0019521.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tsujishita Y, Hurley JH. Structure and lipid transport mechanism of a StAR-related domain. Nat Struct Biol. 2000;7:408–14.  https://doi.org/10.1038/75192.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wang CT, Peters-Golden M, Loch-Caruso R. A calcium-independent phospholipase activity insensitive to bromoenol lactone mediates arachidonic acid release by lindane in rat myometrial cells. Life Sci. 2001;70:453–70.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Yaworsky DC, Baker BY, Bose HS, Best KB, Jensen LB, Bell JD, et al. pH-dependent Interactions of the carboxyl-terminal helix of steroidogenic acute regulatory protein with synthetic membranes. J Biol Chem. 2005;280:2045–54.  https://doi.org/10.1074/jbc.M410937200.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zhou T, Sun L, Humphreys J, Goldsmith EJ. Docking interactions induce exposure of activation loop in the MAP kinase ERK2. Structure. 2006;14:1011–9.  https://doi.org/10.1016/j.str.2006.04.006.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Cecilia Poderoso
    • 1
    Email author
  • Ana F. Castillo
    • 1
  • Pablo G. Mele
    • 1
  • Paula M. Maloberti
    • 1
  • Ernesto J. Podestá
    • 1
  1. 1.Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET; Departamento de Bioquímica HumanaFacultad de Medicina, Universidad de Buenos AiresBuenos AiresArgentina