Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Aleksander CzogallaEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101871


Historical Background

Spectrin was first discovered as a membrane-associated component of erythrocytes in 1968 (Marchesi and Steers 1968). The name was suggested due to the fact that the protein is extractable from red blood cell ghosts (specter), membranes isolated by hypotonic lysis of erythrocytes that retain original shape of these cells. A few years later, the spectrin-based membrane skeleton was first visualized in detergent-extracted erythrocytes by electron microscopy. However, it was over 10 years later when electron micrographs of intact erythrocytes revealed hexagonal network of spectrin filaments interconnected by junctional points (Byers and Branton 1985). Meanwhile, it appeared that isoforms of spectrin can be found in other cells (Goodman et al. 1981), which suggested that spectrin-based membrane skeleton might be essential also for nonerythroid cells. Now, after 50 years of spectrin discovery, it is...

This is a preview of subscription content, log in to check access.


  1. Boguslawska DM, Machnicka B, Hryniewicz-Jankowska A, Czogalla A. Spectrin and phospholipids – the current picture of their fascinating interplay. Cell Mol Biol Lett. 2014;19:158–79.  https://doi.org/10.2478/s11658-014-0185-5.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brown JW, Bullitt E, Sriswasdi S, Harper S, Speicher DW, McKnight CJ. The physiological molecular shape of spectrin: a compact supercoil resembling a Chinese finger trap. PLoS Comput Biol. 2015;11:e1004302.  https://doi.org/10.1371/journal.pcbi.1004302.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Byers TJ, Branton D. Visualization of the protein associations in the erythrocyte membrane skeleton. Proc Natl Acad Sci U S A. 1985;82:6153–7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Czogalla A, Grzymajlo K, Jezierski A, Sikorski AF. Phospholipid-induced structural changes to an erythroid beta spectrin ankyrin-dependent lipid-binding site. Biochim Biophys Acta. 2008;1778:2612–20.  https://doi.org/10.1016/j.bbamem.2008.07.020.CrossRefGoogle Scholar
  5. Czogalla A, Sikorski AF. Do we already know how spectrin attracts ankyrin? Cell Mol Life Sci. 2010;67:2679–83.  https://doi.org/10.1007/s00018-010-0371-1.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Czogalla A, Sikorski AF. Spectrin and calpain: a ‘target’ and a ‘sniper’ in the pathology of neuronal cells. Cell Mol Life Sci. 2005;62:1913–24.  https://doi.org/10.1007/s00018-005-5097-0.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Da Costa L, Galimand J, Fenneteau O, Mohandas N. Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders. Blood Rev. 2013;27:167–78.  https://doi.org/10.1016/j.blre.2013.04.003.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dubreuil RR, Grushko T. Genetic studies of spectrin: new life for a ghost protein. Bioessays. 1998;20:875–8. doi:10.1002/(SICI)1521-1878(199811)20:11<875::AID-BIES1>3.0.CO;2-P.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Goellner B, Aberle H. The synaptic cytoskeleton in development and disease. Dev Neurobiol. 2012;72:111–25.  https://doi.org/10.1002/dneu.20892.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Goodman SR, Zagon IS, Kulikowski RR. Identification of a spectrin-like protein in nonerythroid cells. Proc Natl Acad Sci USA. 1981;78:7570–4.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Ipsaro JJ, Huang L, Mondragon A. Structures of the spectrin-ankyrin interaction binding domains. Blood. 2009;113:5385–93.  https://doi.org/10.1182/blood-2008-10-184358.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Le Rumeur E, Hubert JF, Winder SJ. A new twist to coiled coil. FEBS Lett. 2012;586:2717–22.  https://doi.org/10.1016/j.febslet.2012.05.004.
  13. Lux SE. Anatomy of the red cell membrane skeleton: unanswered questions. Blood. 2016;127:187–99.  https://doi.org/10.1182/blood-2014-12-512772.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Boguslawska DM, Grochowalska R, Heger E, et al. Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. Biochim Biophys Acta. 2014;1838:620–34.  https://doi.org/10.1016/j.bbamem.2013.05.002.CrossRefGoogle Scholar
  15. Machnicka B, Grochowalska R, Boguslawska DM, Sikorski AF, Lecomte MC. Spectrin-based skeleton as an actor in cell signaling. Cell Mol Life Sci. 2012;69:191–201.  https://doi.org/10.1007/s00018-011-0804-5.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Marchesi VT, Steers Jr E. Selective solubilization of a protein component of the red cell membrane. Science. 1968;159:203–4.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Nans A, Mohandas N, Stokes DL. Native ultrastructure of the red cell cytoskeleton by cryo-electron tomography. Biophys J. 2011;101:2341–50.  https://doi.org/10.1016/j.bpj.2011.09.050.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Perkins EM, Clarkson YL, Sabatier N, Longhurst DM, Millward CP, Jack J, et al. Loss of beta-III spectrin leads to Purkinje cell dysfunction recapitulating the behavior and neuropathology of spinocerebellar ataxia type 5 in humans. J Neurosci. 2010;30:4857–67.  https://doi.org/10.1523/JNEUROSCI.6065-09.2010.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Wolny M, Grzybek M, Bok E, Chorzalska A, Lenoir M, Czogalla A, et al. Key amino acid residues of ankyrin-sensitive phosphatidylethanolamine/phosphatidylcholine-lipid binding site of betaI-spectrin. PLoS ONE. 2011;6:e21538.  https://doi.org/10.1371/journal.pone.0021538.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Xu K, Zhong G, Zhuang X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science. 2013;339:452–6.  https://doi.org/10.1126/science.1232251.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Cytobiochemistry, Faculty of BiotechnologyUniversity of WrocławWrocławPoland