Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Serine/Threonine-Protein Phosphatase 2A

  • Veerle JanssensEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101865


Historical Background

Since Krebs and Fischer (1956) discovered that the activity of an enzyme (glycogen phosphorylase) can be regulated by a reversible phosphorylation, much attention has been paid to the enzymes catalyzing these covalent modifications: the protein kinases and protein phosphatases. As opposed to protein kinases, it has taken much more time to understand the action of protein phosphatases, mainly because of their complex molecular structure and broad substrate specificities. Nevertheless, protein phosphatases are equally important in controlling biochemical pathways, adding reversibility and sensitivity to these processes.

While the first kinase (phosphorylase kinase) was isolated soon after the discovery of the concept of reversible protein phosphorylation, the biochemical isolation of the first phosphataseneeded about 20 more years: ethanol denaturation (accidently...

This is a preview of subscription content, log in to check access.


  1. Ahn JH, McAvoy T, Rakhilin SV, Nishi A, Greengard P, Nairn AC. Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56δ subunit. Proc Natl Acad Sci U S A. 2007a;104:2979–84.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahn JH, Sung JY, McAvoy T, Nishi A, Janssens V, Goris J, et al. The B″/PR72 subunit mediates Ca2+-dependent dephosphorylation of DARPP-32 by protein phosphatase 2A. Proc Natl Acad Sci U S A. 2007b;104:9876–81.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Basu S. PP2A in the regulation of cell motility and invasion. Curr Protein Pept Sci. 2011;12:3–11.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Brandt H, Capulong ZL, Lee EY. Purification and properties of rabbit liver phosphorylase phosphatase. J Biol Chem. 1975;250:8038–44.PubMedPubMedCentralGoogle Scholar
  5. Chen J, Martin BL, Brautigan DL. Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science. 1992;257:1261–4.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cheng YS, Seibert O, Klöting N, Dietrich A, Straßburger K, Fernández-Veledo S, et al. PPP2R5C couples hepatic glucose and lipid homeostasis. PLoS Genet. 2015;11:e1005561. doi:10.1371/journal.pgen.1005561.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cundell MJ, Hutter LH, Nunes Bastos R, Poser E, Holder J, Mohammed S, et al. A PP2A-B55 recognition signal controls substrate dephosphorylation kinetics during mitotic exit. J Cell Biol. 2016;214:539–54. doi:10.1083/jcb.201606033.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dodge-Kafka KL, Bauman A, Mayer N, Henson E, Heredia L, Ahn J, et al. cAMP-stimulated protein phosphatase 2A activity associated with muscle A kinase-anchoring protein (mAKAP) signaling complexes inhibits the phosphorylation and activity of the cAMP-specific phosphodiesterase PDE4D3. J Biol Chem. 2010;285:11078–86. doi:10.1074/jbc.M109.034868.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Eichhorn PJ, Creyghton MP, Bernards R. Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta. 2009;1795:1–15. doi:10.1016/j.bbcan.2008.05.005.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Guergnon J, Godet AN, Galioot A, Falanga PB, Colle JH, Cayla X, et al. PP2A targeting by viral proteins: a widespread biological strategy from DNA/RNA tumor viruses to HIV-1. Biochim Biophys Acta. 2011;1812:1498–507. doi:10.1016/j.bbadis.2011.07.001.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Haesen D, Sents W, Ivanova E, Lambrecht C, Janssens V. Cellular inhibitors of protein phosphatase PP2A in cancer. Biomed Res India. 2012;23:197–211.Google Scholar
  12. Hahn WC, Weinberg RA. Rules for making human tumor cells. N Engl J Med. 2002;347:1593–603.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Hertz EP, Kruse T, Davey NE, López-Méndez B, Sigurðsson JO, Montoya G, et al. A conserved motif provides binding specificity to the PP2A-B56 phosphatase. Mol Cell. 2016;63:686–95. doi:10.1016/j.molcel.2016.06.024.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hombauer H, Weismann D, Mudrak I, Stanzel C, Fellner T, Lackner DH, et al. Generation of active protein phosphatase 2A is coupled to holoenzyme assembly. PLoS Biol. 2007;5:e155.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Houge G, Haesen D, Vissers LE, Mehta S, Parker MJ, Wright M, et al. B56δ-related protein phosphatase 2A dysfunction identified in patients with intellectual disability. J Clin Invest. 2015;125:3051–62. doi:10.1172/JCI79860.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hunt T. On the regulation of protein phosphatase 2A and its role in controlling entry into and exit from mitosis. Adv Biol Regul. 2013;53:173–8. doi:10.1016/j.jbior.2013.04.001.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ingebritsen TS, Cohen P. The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities. Eur J Biochem. 1983;132:255–61.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J. 2001;353:417–39.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Janssens V, Rebollo A. The role and therapeutic potential of Ser/Thr phosphatase PP2A in apoptotic signalling networks in human cancer cells. Curr Mol Med. 2012;12:268–87.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Janssens V, Jordens J, Stevens I, Van Hoof C, Martens E, De Smedt H, et al. Identification and functional analysis of two Ca2+-binding EF-hand motifs in the B″/PR72 subunit of protein phosphatase 2A. J Biol Chem. 2003;278:10697–706.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Janssens V, Longin S, Goris J. PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci. 2008;33:113–21. doi:10.1016/j.tibs.2007.12.004.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kirchhefer U, Brekle C, Eskandar J, Isensee G, Kučerová D, Müller FU, et al. Cardiac function is regulated by B56α-mediated targeting of protein phosphatase 2A (PP2A) to contractile relevant substrates. J Biol Chem. 2014;289:33862–73.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kolupaeva V, Janssens V. PP1 and PP2A phosphatases – cooperating partners in modulating retinoblastoma protein activation. FEBS J. 2013;280:627–43. doi:10.1111/j.1742-4658.2012.08511.x.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kolupaeva V, Daempfling L, Basilico C. The B55α regulatory subunit of protein phosphatase 2A mediates fibroblast growth factor-induced p107 dephosphorylation and growth arrest in chondrocytes. Mol Cell Biol. 2013;33:2865–78. doi:10.1128/MCB.01730-12.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kowluru A, Matti A. Hyperactivation of protein phosphatase 2A in models of glucolipotoxicity and diabetes: potential mechanisms and functional consequences. Biochem Pharmacol. 2012;84:591–7. doi:10.1016/j.bcp.2012.05.003.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Krebs EG, Fischer EH. The phosphorylase b to a converting enzyme of rabbit skeletal muscle. Biochim Biophys Acta. 1956;20:150–7.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Lambrecht C, Haesen D, Sents W, Ivanova E, Janssens V. Structure, regulation, and pharmacological modulation of PP2A phosphatases. Methods Mol Biol. 2013;1053:283–305. doi:10.1007/978-1-62703-562-0_17.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Letourneux C, Rocher G, Porteu F. B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J. 2006;25:727–38.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Loveday C, Tatton-Brown K, Clarke M, Westwood I, Renwick A, Ramsay E, et al. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth. Hum Mol Genet. 2015;24:4775–9. doi:10.1093/hmg/ddv182.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Low IC, Loh T, Huang Y, Virshup DM, Pervaiz S. Ser70 phosphorylation of Bcl-2 by selective tyrosine nitration of PP2A-B56δ stabilizes its antiapoptotic activity. Blood. 2014;124:2223–34. doi:10.1182/blood-2014-03-563296.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lubbers ER, Mohler PJ. Roles and regulation of protein phosphatase 2A (PP2A) in the heart. J Mol Cell Cardiol. 2016;101:127–33. doi:10.1016/j.yjmcc.2016.11.003.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Millward TA, Zolnierowicz S, Hemmings BA. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci. 1999;24:186–91.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Oaks J, Ogretmen B. Regulation of PP2A by sphingolipid metabolism and signaling. Front Oncol. 2015;4:388. doi:10.3389/fonc.2014.00388.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ohama T, Brautigan DL. Endotoxin conditioning induces VCP/p97-mediated and inducible nitric-oxide synthase-dependent Tyr284 nitration in protein phosphatase 2A. J Biol Chem. 2010;285:8711–8. doi:10.1074/jbc.M109.099788.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Perrotti D, Neviani P. Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol. 2013;14:e229–38. doi:10.1016/S1470-2045(12)70558-2.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ruvolo PP. The broken “off” switch in cancer signaling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance. BBA Clin. 2016;6:87–99. doi:10.1016/j.bbacli.2016.08.002.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sangodkar J, Farrington CC, McClinch K, Galsky MD, Kastrinsky DB, Narla G. All roads lead to PP2A: exploiting the therapeutic potential of this phosphatase. FEBS J. 2016;283:1004–24. doi:10.1111/febs.13573.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schmitz MH, Held M, Janssens V, Hutchins JR, Hudecz O, Ivanova E, et al. Live-cell imaging RNAi screen identifies PP2A-B55alpha and importin-beta1 as key mitotic exit regulators in human cells. Nat Cell Biol. 2010;12:886–93. doi:10.1038/ncb2092.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sents W, Ivanova E, Lambrecht C, Haesen D, Janssens V. The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. FEBS J. 2013;280:644–61. doi:10.1111/j.1742-4658.2012.08579.x.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shi Y. Serine/threonine phosphatases: mechanism through structure. Cell. 2009;139:468–84. doi:10.1016/j.cell.2009.10.006.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shouse GP, Nobumori Y, Panowicz MJ, Liu X. ATM-mediated phosphorylation activates the tumor-suppressive function of B56γ-PP2A. Oncogene. 2011;30:3755–65. doi:10.1038/onc.2011.95.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sontag JM, Sontag E. Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci. 2014;7:16. doi:10.3389/fnmol.2014.00016.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Taymans JM, Baekelandt V. Phosphatases of α-synuclein, LRRK2, and tau: important players in the phosphorylation-dependent pathology of Parkinsonism. Front Genet. 2014;5:382. doi:10.3389/fgene.2014.00382.13.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Voronkov M, Braithwaite SP, Stock JB. Phosphoprotein phosphatase 2A: a novel druggable target for Alzheimer’s disease. Future Med Chem. 2011;3:821–33. doi:10.4155/fmc.11.47.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Waelkens E, Goris J, Merlevede W. Purification and properties of polycation-stimulated phosphorylase phosphatases from rabbit skeletal muscle. J Biol Chem. 1987;262:1049–59.PubMedPubMedCentralGoogle Scholar
  46. Wlodarchak N, Xing Y. PP2A as a master regulator of the cell cycle. Crit Rev Biochem Mol Biol. 2016;51:162–84. doi:10.3109/10409238.2016.1143913.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and ProteomicsUniversity of Leuven (KU LEUVEN)LeuvenBelgium