Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

SLC24A Family (K+-Dependent Na+-Ca2+ Exchanger, NCKX)

  • Ali H. Jalloul
  • Robert T. Szerencsei
  • Tatiana P. Rogasevskaia
  • Paul P. M. Schnetkamp
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101860

Synonyms

Historical Background

Tightly controlled changes in cytosolic free Ca2+ concentration are widely involved in cell signaling in most tissues of our body. Free Ca2+ concentration is increased through the activation of a wide range of surface or intracellular Ca2+ channels and is returned to resting values through the action of ATP-driven Ca2+ pumps located in the plasma membrane and endoplasmic reticulum as well as Na+/Ca2+ exchangers located on the plasma membrane. By the mid 1980s, it had been established that the surface membrane of the outer segments of retinal rod photoreceptors (ROS) contained a potent Na+-Ca2+ exchange mechanism (Schnetkamp 1980; Yau and Nakatani 1984), and, in 1988, the Na+-Ca2+ exchanger protein was purified from bovine ROS as a 220 kDa glycoprotein (Cook and Kaupp 1988). In...

This is a preview of subscription content, log in to check access.

References

  1. Cervetto L, Lagnado L, Perry RJ, Robinson DW, McNaughton PA. Extrusion of calcium from rod outer segments is driven by both sodium and potassium gradients. Nature. 1989;337:740–3.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Cook NJ, Kaupp UB. Solubilization, purification, and reconstitution of the sodium-calcium exchanger from bovine retinal rod outer segments. J Biol Chem. 1988;263:11382–8.PubMedPubMedCentralGoogle Scholar
  3. Fain GL, Matthews HR, Cornwall MC, Koutalos Y. Adaptation in vertebrate photoreceptors. Physiol Rev. 2001;81:117–51.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ginger RS, Askew SE, Ogborne RM, Wilson S, Ferdinando D, Dadd T, et al. SLC24A5 encodes a trans-Golgi network protein with potassium-dependent sodium-calcium exchange activity that regulates human epidermal melanogenesis. J Biol Chem. 2008;283:5486–95.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Jalloul AH, Rogasevskaia TP, Szerencsei RT, Schnetkamp PP. A functional study of mutations in K+-dependent Na+-Ca2+ exchangers associated with amelogenesis imperfecta and non-syndromic oculocutaneous albinism. J Biol Chem. 2016a;291:13113–23.  https://doi.org/10.1074/jbc.M116.728824.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Jalloul AH, Szerencsei RT, Schnetkamp PP. Cation dependencies and turnover rates of the human K(+)-dependent Na(+)-Ca(2)(+) exchangers NCKX1, NCKX2, NCKX3 and NCKX4. Cell Calcium. 2016b;59:1–11.  https://doi.org/10.1016/j.ceca.2015.11.001.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Kang K-J, Kinjo TG, Szerencsei RT, Schnetkamp PPM. Residues contributing to the Ca2+ and K+ binding pocket of the NCKX2 Na+/Ca2+-K+ exchanger. J Biol Chem. 2005a;280:6823–33.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Kang K-J, Shibukawa Y, Szerencsei RT, Schnetkamp PPM. Substitution of a single residue, Asp575, renders the NCKX2 K+-dependent Na+/Ca2+ exchanger independent of K+. J Biol Chem. 2005b;280:6834–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Khananshvili D. The SLC8 gene family of sodium-calcium exchangers (NCX) – structure, function, and regulation in health and disease. Mol Asp Med. 2013;34:220–35.  https://doi.org/10.1016/j.mam.2012.07.003.CrossRefGoogle Scholar
  10. Kraev A, Quednau BD, Leach S, Li XF, Dong H, Winkfein RJ, et al. Molecular cloning of a third member of the potassium-dependent sodium-calcium exchanger gene family, NCKX3. J Biol Chem. 2001;276:23161–72.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Lamason RL, Mohideen MA, Mest JR, Wong AC, Norton HL, Aros MC, et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science. 2005;310:1782–6.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Li XF, Lytton J. An essential role for the K+-dependent Na+/Ca2+-exchanger, NCKX4, in melanocortin-4-receptor-dependent satiety. J Biol Chem. 2014;289:25445–59.  https://doi.org/10.1074/jbc.M114.564450.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Li XF, Kiedrowski L, Tremblay F, Fernandez FR, Perizzolo M, Winkfein RJ, et al. Importance of K+-dependent Na+/Ca2+-exchanger 2, NCKX2, in motor learning and memory. J Biol Chem. 2006;281:6273–8262.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Liao J, Li H, Zeng W, Sauer DB, Belmares R, Jiang Y. Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science. 2012;10:686–90.CrossRefGoogle Scholar
  15. Palczewski K, Polans AS, Baehr W, Ames JB. Ca(2+)-binding proteins in the retina: structure, function, and the etiology of human visual diseases. Bioessays. 2000;22:337–50.  https://doi.org/10.1002/(SICI)1521-1878(200004)22:4<337::AID-BIES4>3.0.CO;2-Z.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Prinsen CFM, Szerencsei RT, Schnetkamp PPM. Molecular cloning and functional expression the potassium-dependent sodium-calcium exchanger from human and chicken retinal cone photoreceptors. J Neurosci. 2000;20:1424–34.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Reiländer H, Achilles A, Friedel U, Maul G, Lottspeich F, Cook NJ. Primary structure and functional expression of the Na/Ca,K-exchanger from bovine rod photoreceptors. EMBO J. 1992;11:1689–95.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Sakurai K, Vinberg F, Wang T, Chen J, Kefalov VJ. The Na(+)/Ca(2+), K(+) exchanger 2 modulates mammalian cone phototransduction. Sci Report. 2016;6:32521.  https://doi.org/10.1038/srep32521.CrossRefGoogle Scholar
  19. Schnetkamp PPM. Ion selectivity of the cation transport system of isolated cattle rod outer segments: evidence of a direct communication between the rod plasma membrane and the rod disk membranes. Biochim Biophys Acta. 1980;598:66–90.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Schnetkamp PPM. The SLC24 gene family of Na(+)/Ca(2)(+)-K(+) exchangers: from sight and smell to memory consolidation and skin pigmentation. Mol Asp Med. 2013;34:455–64.  https://doi.org/10.1016/j.mam.2012.07.008.CrossRefGoogle Scholar
  21. Schnetkamp PPM, Basu DK, Szerencsei RT. Na-Ca exchange in the outer segments of bovine rod photoreceptors requires and transports potassium. Am J Physiol Cell Physiol. 1989;257:C153–C7.CrossRefGoogle Scholar
  22. Schnetkamp PP, Jalloul AH, Liu G, Szerencsei RT. The SLC24 family of K(+)-dependent Na(+)-Ca(2)(+) exchangers: structure-function relationships. Curr Top Membr. 2014;73:263–87.  https://doi.org/10.1016/B978-0-12-800223-0.00007-4.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Stephan AB, Tobochnik S, Dibattista M, Wall CM, Reisert J, Zhao H. The Na(+)/Ca(2+) exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response. Nat Neurosci. 2012;15:131–7.CrossRefGoogle Scholar
  24. Stokowski RP, Pant PV, Dadd T, Fereday A, Hinds DA, Jarman C, et al. A genomewide association study of skin pigmentation in a South Asian population. Am J Hum Genet. 2007;81:1119–32.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Magnusson KP, et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat Genet. 2007;39:1443–52.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Szerencsei RT, Prinsen CFM, Schnetkamp PPM. The stoichiometry of the retinal cone Na/Ca-K exchanger heterologously expressed in insect cells: comparison with the bovine heart Na/Ca exchanger. Biochemistry. 2001;40:6009–15.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Szerencsei RT, Winkfein RJ, Cooper CB, Prinsen CFM, Kinjo TG, Kang K-J, et al. The Na/Ca-K exchanger gene family. Ann N Y Acad Sci. 2002;976:41–52.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Szerencsei RT, Kinjo TG, Schnetkamp PP. The topology of the C-terminal sections of the NCX1 Na (+)/Ca (2+) exchanger and the NCKX2 Na (+)/Ca (2+) -K (+) exchanger. Channels. 2013;7:109–14.  https://doi.org/10.4161/chan.23898.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Szerencsei RT, Ginger RS, Green MR, Schnetkamp PP. Identification and characterization of K(+)-dependent Na(+)-Ca(2+) exchange transport in pigmented MEB4 cells mediated by NCKX4. Biochemistry. 2016;55:2704–12.  https://doi.org/10.1021/acs.biochem.6b00017.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Vinberg F, Wang T, Molday RS, Chen J, Kefalov VJ. A new mouse model for stationary night blindness with mutant Slc24a1 explains the pathophysiology of the associated human disease. Hum Mol Genet. 2015;24:5915–29.  https://doi.org/10.1093/hmg/ddv319.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Winkfein RJ, Szerencsei RT, Kinjo TG, Kang K-J, Perizzolo M, Eisner L, et al. Scanning mutagenesis of the alpha repeats and of the transmembrane acidic residues of the human retinal cone Na/Ca-K exchanger. Biochemistry. 2003;42:543–52.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Yau K-W, Nakatani K. Electrogenic Na-Ca exchange in retinal rod outer segment. Nature. 1984;311:661–3.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Zhekova H, Zhao C, Schnetkamp PP, Noskov SY. Characterization of the cation binding sites in the NCKX2 Na+/Ca2+-K+ exchanger. Biochemistry. 2016;55:6445–55.  https://doi.org/10.1021/acs.biochem.6b00591.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ali H. Jalloul
    • 1
  • Robert T. Szerencsei
    • 1
  • Tatiana P. Rogasevskaia
    • 1
    • 2
  • Paul P. M. Schnetkamp
    • 1
  1. 1.Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
  2. 2.Department of BiologyMount Royal UniversityCalgaryCanada