Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

RASSF Family

Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101852


Historical Background

The RASSF (Ras Association Domain Family) protein family is a group of ten proteins which has been expanding and gaining interest due to their roles in human pathology. The family is named due to the presence of an RA (Ras-association) domain, the location of which is used to classify the RASSF proteins as C- or N-terminal RASSF proteins (Fig. 1). Interest in the family is fueled by the tumor-suppressive roles displayed by several RASSF members. RASSF7 was arguably the first of the family to be described as HRC-1 (Weitzel et al. 1992); however, it has only recently been renamed to join the ranks of the RASSF family. Therefore, NORE1 (RASSF5) is often considered the founding member following its identification as a Ras effector (Vavvas et al. 1998), joined shortly afterwards by RASSF1, which was originally discovered in the hunt for a lung cancer tumor suppressor on the short arm of chromosome 3 (Dammann et al. 2000...
This is a preview of subscription content, log in to check access.


  1. Agathanggelou A, Cooper WN, Latif F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res. 2005;65(9):3497–508. doi:10.1158/0008-5472.CAN-04-4088.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akino K, Toyota M, Suzuki H, et al. The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer. Gastroenterology. 2005;129(1):156–69. doi:10.1053/j.gastro.2005.03.051.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alam MR, Caldwell BD, Johnson RC, Darlington DN, Mains RE, Eipper BA. Novel proteins that interact with the COOH-terminal cytosolic routing determinants of an integral membrane peptide-processing enzyme. J Biol Chem. 1996;271(45):28636–40. doi:10.1074/jbc.271.45.28636.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Allen NPC, Donninger H, Vos MD, et al. RASSF6 is a novel member of the RASSF family of tumor suppressors. Oncogene. 2007;26(42):6203–11. doi:10.1038/sj.onc.1210440.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Amaar YG, Baylink DJ, Mohan S. Ras-association domain family 1 protein, RASSF1C, is an IGFBP-5 binding partner and a potential regulator of osteoblast cell proliferation. J Bone Min Res. 2005;20(8):1430–9. doi:10.1359/JBMR.050311.CrossRefGoogle Scholar
  6. Amaar YG, Minera MG, Hatran LK, Strong DD, Mohan S, Reeves ME. Ras association domain family 1C protein stimulates human lung cancer cell proliferation. Am J Physiol Lung Cell Mol Physiol. 2006;291(6):1185–1190PubMedPubMedCentralCrossRefGoogle Scholar
  7. Aoyama Y, Avruch J, Zhang X. Nore1 inhibits tumor cell growth independent of Ras or the MST1/2 kinases. Oncogene. 2004;23(19):3426–33. doi:10.1038/sj.onc.1207486.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arnette C, Efimova N, Zhu X, Clark GJ, Kaverina I. Microtubule segment stabilization by RASSF1A is required for proper microtubule dynamics and Golgi integrity. Mol Biol Cell. 2014;25(6):800–10. doi:10.1091/mbc.E13-07-0374.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Arora P, Basu A, Schmidt ML, et al. NS5B promotes degradation of the NORE1A tumor suppressor to facilitate hepatitis C virus replication. Hepatology. 2017. doi:10.1002/hep.29049.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Astuti D, Agathanggelou A, Honorio S, et al. RASSF1A promoter region CpG island hypermethylation in phaeochromocytomas and neuroblastoma tumours. Oncogene. 2001;20(51):7573–7. doi:10.1038/sj.onc.1204968.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Avruch J, Praskova M, Ortiz-Vega S, Liu M, Zhang X-FF. Nore1 and RASSF1 regulation of cell proliferation and of the MST1/2 kinases. Methods Enzym. 2006;407(2002):290–310. doi:10.1016/S0076-6879(05)07025-4.CrossRefGoogle Scholar
  12. Baksh S, Tommasi S, Fenton S, et al. The tumor suppressor RASSF1A and MAP-1 link death receptor signaling to Bax conformational change and cell death. Mol Cell. 2005;18(6):637–50. doi:10.1016/j.molcel.2005.05.010.CrossRefPubMedGoogle Scholar
  13. Bee C, Moshnikova A, Mellor CD, et al. Growth and tumor suppressor NORE1A is a regulatory node between Ras signaling and microtubule nucleation. J Biol Chem. 2010;285(21):16258–66. doi:10.1074/jbc.M109.081562.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bergqvist J, Latif A, Roberts SA, et al. RASSF1A polymorphism in familial breast cancer. Fam Cancer. 2010;9(3):263–5. doi:10.1007/s10689-010-9335-8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bryant D, Becker L, Richardson J, et al. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-α. Circulation. 1998;97(14):1375–1381PubMedPubMedCentralCrossRefGoogle Scholar
  16. Burbee DG, Forgacs E, Zöchbauer-Müller S, et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst. 2001;93(9):691–9. doi:10.1093/JNCI/93.9.691.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Camps C, Buffa FM, Colella S, et al. hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res. 2008;14(5):1340–8. doi:10.1158/1078-0432.CCR-07-1755.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chang HW, Chan A, Kwong DLW, Wei WI, Sham JST, Yuen APW. Evaluation of hypermethylated tumor suppressor genes as tumor markers in mouth and throat rinsing fluid, nasopharyngeal swab and peripheral blood of nasopharygeal carcinoma patient. Int J Cancer. 2003;105(6):851–5. doi:10.1002/ijc.11162.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen L. P-CIP1, a novel protein that interacts with the cytosolic domain of peptidylglycine alpha -amidating monooxygenase, is associated with endosomes. J Biol Chem. 1998;273(50):33524–32. doi:10.1074/jbc.273.50.33524.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chow LS, Lo KW, Kwong J, Wong AY, Huang DP. Aberrant methylation of RASSF4/AD037 in nasopharyngeal carcinoma. Oncol Rep. 2004;12(4):781–7. https://www.ncbi.nlm.nih.gov/pubmed/15375500.
  21. Comincini S, Castiglioni BM, Foti GM, Del Vecchio I, Ferretti L. Isolation and molecular characterization of rasfadin, a novel gene in the vicinity of the bovine prion gene. Mamm Genome. 2001;12(2):150–6.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cooper WN, Dickinson RE, Dallol A, et al. Epigenetic regulation of the ras effector/tumour suppressor RASSF2 in breast and lung cancer. Oncogene. 2008;27(12):1805–11. doi:10.1038/sj.onc.1210805.CrossRefPubMedGoogle Scholar
  23. Cooper WN, Hesson LB, Matallanas D, et al. RASSF2 associates with and stabilizes the proapoptotic kinase MST2. Oncogene. 2009;28(33):2988–98. doi:10.1038/onc.2009.152.CrossRefPubMedPubMedCentralGoogle Scholar
  24. da Costa PE, Cavalli LR, Rainho CA. Evidence of epigenetic regulation of the tumor suppressor gene cluster flanking RASSF1 in breast cancer cell lines. Epigenetics. 2011;6(12):1413–24. doi:10.4161/epi.6.12.18271.CrossRefGoogle Scholar
  25. Dallol A, Agathanggelou A, Fenton SL, et al. RASSF1A interacts with microtubule-associated proteins and modulates microtubule dynamics RASSF1A interacts with microtubule-associated proteins and modulates microtubule dynamics. Cancer Res. 2004;16:4112–6.CrossRefGoogle Scholar
  26. Dallol A, Hesson LB, Matallanas D, et al. RAN GTPase is a RASSF1A effector involved in controlling microtubule organization. Curr Biol. 2009;19(14):1227–32. doi:10.1016/j.cub.2009.05.064.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dammann R, Li C, Yoon J-HH, Chin PL, Bates S, Pfeifer GP. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet. 2000;25(3):315–9. doi:10.1038/77083.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dammann R, Schagdarsurengin U, Strunnikova M, et al. Epigenetic inactivation of the Ras-association domain family 1 (RASSF1A) gene and its function in human carcinogenesis. Histol Histopathol. 2003a;18(2):665–77. http://www.ncbi.nlm.nih.gov/pubmed/12647816.
  29. Dammann R, Schagdarsurengin U, Liu L, et al. Frequent RASSF1A promoter hypermethylation and K-ras mutations in pancreatic carcinoma. Oncogene. 2003b;22(24):3806–12. doi:10.1038/sj.onc.1206582.CrossRefPubMedPubMedCentralGoogle Scholar
  30. de Caceres II, Battagli C, Esteller M, et al. Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res. 2004;64(18):6476–81. doi:10.1158/0008-5472.CAN-04-1529.CrossRefGoogle Scholar
  31. Debeer P, Schoenmakers EFPM, Twal WO, et al. The fibulin-1 gene (FBLN1) is disrupted in a t(12;22) associated with a complex type of synpolydactyly. J Med Genet. 2002;39(2):98–104. doi:10.1136/JMG.39.2.98.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Delre D, Clark GJ. Proapoptotic Rassf1A/Mst1 signaling in cardiac fibroblasts is protective against pressure overload in mice. J Clin Invest. 2010;120. doi:10.1172/JCI43569.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Djos A, Martinsson T, Kogner P, Carén H. The RASSF gene family members RASSF5, RASSF6 and RASSF7 show frequent DNA methylation in neuroblastoma. Mol Cancer. 2012;11:40. doi:10.1186/1476-4598-11-40.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Donninger H, Vos MD, Clark GJ. The RASSF1A tumor suppressor. J Cell Sci. 2007;120(Pt 18):3163–72. doi:10.1242/jcs.010389.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Donninger H, Hesson L, Vos M, et al. The Ras effector RASSF2 controls the PAR-4 tumor suppressor. Mol Cell Biol. 2010;30(11):2608–20. doi:10.1128/MCB.00208-09.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Donninger H, Clark JA, Monaghan MK, Schmidt ML, Vos M, Clark GJ. Cell cycle restriction is more important than apoptosis induction for RASSF1A protein tumor suppression. J Biol Chem. 2014;289(45):31287–95. doi:10.1074/jbc.M114.609537.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Donninger H, Clark J, Rinaldo F, et al. The RASSF1A tumor suppressor regulates XPA-mediated DNA repair. Mol Cell Biol. 2015a;35(1):277–87. doi:10.1128/MCB.00202-14.CrossRefPubMedGoogle Scholar
  38. Donninger H, Calvisi DF, Barnoud T, et al. NORE1A is a Ras senescence effector that controls the apoptotic/senescent balance of p53 via HIPK2. J Cell Biol. 2015b;208(6):777–89.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dreijerink K, Braga E, Kuzmin I, et al. The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis. Proc Natl Acad Sci U S A. 2001;98(13):7504–9. doi:10.1073/pnas.131216298.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Eckfeld K, Hesson L, Vos MD, Bieche I, Latif F, Clark GJ. RASSF4/AD037 is a potential ras effector/tumor suppressor of the RASSF family. Cancer Res. 2004;64(23):8688–93. doi:10.1158/0008-5472.CAN-04-2065.CrossRefPubMedGoogle Scholar
  41. Endoh M, Tamura G, Honda T, et al. RASSF2, a potential tumour suppressor, is silenced by CpG island hypermethylation in gastric cancer. Br J Cancer. 2005;93(12):1395–9. doi:10.1038/sj.bjc.6602854.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Escobar-Cabrera E, Lau DKW, Giovinazzi S, Ishov AM, McIntosh LP. Structural characterization of the DAXX N-terminal helical bundle domain and its complex with Rassf1C. Structure. 2010;18(12):1642–53. doi:10.1016/j.str.2010.09.016.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Estrabaud E, Lassot I, Blot G, et al. RASSF1C, an isoform of the tumor suppressor RASSF1A, promotes the accumulation of -catenin by interacting with TrCP. Cancer Res. 2007;67(3):1054–61. doi:10.1158/0008-5472.CAN-06-2530.CrossRefPubMedGoogle Scholar
  44. Falvella FS, Manenti G, Spinola M, et al. Identification of RASSF8 as a candidate lung tumor suppressor gene. Oncogene. 2006;25(28):3934–8. doi:10.1038/sj.onc.1209422.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Fiegl H, Gattringer C, Widschwendter A, et al. Methylated DNA collected by tampons – a new tool to detect endometrial cancer. Cancer Epidemiol Biomarkers Prev. 2004;13(5):882–8.PubMedPubMedCentralGoogle Scholar
  46. Foley CJ, Freedman H, Choo SL, et al. Dynamics of RASSF1A/MOAP-1 association with death receptors. Mol Cell Biol. 2008;28(14):4520–35. doi:10.1128/MCB.02011-07.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Foukakis T, Au AYM, Wallin G, et al. The Ras effector NORE1A is suppressed in follicular thyroid carcinomas with a PAX8-PPAR γ fusion. J Clin Endocrinol Metab. 2006;91(3):1143–9. doi:10.1210/jc.2005-1372.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Friess H, Ding J, Kleeff J, et al. Microarray-based identification of differentially expressed growth- and metastasis-associated genes in pancreatic cancer. Cell Mol Life Sci C. 2003;60(6):1180–99. doi:10.1007/s00018-003-3036-5.CrossRefGoogle Scholar
  49. Fujita H, Fukuhara S, Sakurai A, et al. Local activation of Rap1 contributes to directional vascular endothelial cell migration accompanied by extension of microtubules on which RAPL, a Rap1-associating molecule, localizes. J Biol Chem. 2005;280(6):5022–31. doi:10.1074/jbc.M409701200.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Fukatsu A, Ishiguro F, Tanaka I, et al. RASSF3 downregulation increases malignant phenotypes of non-small cell lung cancer. Lung Cancer. 2014;83(1):23–9. doi:10.1016/j.lungcan.2013.10.014.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Gao BN, Xie XJ, Huang CX, et al. RASSF1A polymorphism A133S is associated with early onset breast cancer in BRCA1/2 mutation carriers. Cancer Res. 2008;68(1):22–5. doi:10.1158/0008-5472.Can-07-5183.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Geli J, Kogner P, Lanner F, et al. Assessment of NORE1A as a putative tumor suppressor in human neuroblastoma. Int J Cancer. 2008;123(2):389–94. doi:10.1002/ijc.23533.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Giovinazzi S, Lindsay CR, Morozov VM, et al. Regulation of mitosis and taxane response by Daxx and Rassf1. Oncogene. 2012;31(1):13–26. doi:10.1038/onc.2011.211.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Gordon M, El-Kalla M, Baksh S. RASSF1 polymorphisms in cancer. Mol Biol Int. 2012;2012:365213. doi:10.1155/2012/365213.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Grawenda AM, O’Neill E. Clinical utility of RASSF1A methylation in human malignancies. Br J Cancer. 2015;113(3):372–81. doi:10.1038/bjc.2015.221.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Gulsen T, Hadjicosti I, Li Y, Zhang X, Whitley PR, Chalmers AD. Truncated RASSF7 promotes centrosomal defects and cell death. Dev Biol. 2016;409(2):502–17. doi:10.1016/j.ydbio.2015.11.001.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Guo C, Tommasi S, Liu L, Yee J-K, Dammann R, Pfeifer GP. RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats tumor-suppressor network. Curr Biol. 2007;17(8):700–5. doi:10.1016/j.cub.2007.02.055.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Guo W, Cui L, Wang C, et al. Decreased expression of RASSF1A and up-regulation of RASSF1C is associated with esophageal squamous cell carcinoma. Clin Exp Metastasis. 2014;31(5):521–33. doi:10.1007/s10585-014-9646-5.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Guo W, Dong Z, Guo Y, et al. Decreased expression and frequent promoter hypermethylation of RASSF2 and RASSF6 correlate with malignant progression and poor prognosis of gastric cardia adenocarcinoma. Mol Carcinog. 2016;55(11):1655–66. doi:10.1002/mc.22416.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hamilton G, Yee KS, Scrace S, O’Neill E. ATM regulates a RASSF1A-dependent DNA damage response. Curr Biol. 2009;19(23):2020–5. doi:10.1016/j.cub.2009.10.040.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Han Y, Dong Q, Hao J, et al. RASSF4 is downregulated in nonsmall cell lung cancer and inhibits cancer cell proliferation and invasion. Tumour Biol. 2016;37(4):4865–71. doi:10.1007/s13277-015-4343-9.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Harada K, Toyooka S, Maitra A, et al. Aberrant promoter methylation and silencing of the RASSF1A gene in pediatric tumors and cell lines. Oncogene. 2002;21(27):4345–9. doi:10.1038/sj.onc.1205446.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Heallen T, Zhang M, Wang J, et al. Hippo pathway inhibits wnt signaling to restrain cardiomyocyte proliferation and heart size. Science (80- ). 2011;332(6028):458–61. doi:10.1126/science.1199010.CrossRefGoogle Scholar
  65. Helmbold P, Richter AM, Walesch S, et al. RASSF10 promoter hypermethylation is frequent in malignant melanoma of the skin but uncommon in nevus cell nevi. J Invest Dermatol. 2012;132(3):687–94. doi:10.1038/jid.2011.380.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Hesson L, Dallol A, Minna JD, Maher ER, Latif F. NORE1A, a homologue of RASSF1A tumour suppressor gene is inactivated in human cancers. Oncogene. 2003;22(6):947–54. doi:10.1038/sj.onc.1206191.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Hesson L, Bièche I, Krex D, et al. Frequent epigenetic inactivation of RASSF1A and BLU genes located within the critical 3p21.3 region in gliomas. Oncogene. 2004;23(13):2408–19. doi:10.1038/sj.onc.1207407.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Hesson LB, Wilson R, Morton D, et al. CpG island promoter hypermethylation of a novel Ras-effector gene RASSF2A is an early event in colon carcinogenesis and correlates inversely with K-ras mutations. Oncogene. 2005;24(24):3987–94. doi:10.1038/sj.onc.1208566.CrossRefPubMedGoogle Scholar
  69. Hesson LB, Cooper WN, Latif F. Evaluation of the 3p21.3 tumour-suppressor gene cluster. Oncogene. 2007;26(52):7283–301. doi:10.1038/sj.onc.1210547.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Hesson LB, Dunwell TL, Cooper WN, et al. The novel RASSF6 and RASSF10 candidate tumour suppressor genes are frequently epigenetically inactivated in childhood leukaemias. Mol Cancer. 2009;8(1):42. doi:10.1186/1476-4598-8-42.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Hill VK, Underhill-Day N, Krex D, et al. Epigenetic inactivation of the RASSF10 candidate tumor suppressor gene is a frequent and an early event in gliomagenesis. Oncogene. 2011;30(8):978–89. doi:10.1038/onc.2010.471.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Hoque MO, Begum S, Topaloglu O, et al. Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res. 2004;64(15):5511–7. doi:10.1158/0008-5472.CAN-04-0799.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Hung J, Kishimoto Y, Sugio K, et al. Allele-specific chromosome 3p deletions occur at an early stage in the pathogenesis of lung carcinoma. JAMA. 1995;273(7):558. doi:10.1001/jama.1995.03520310056030.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Hwang E, Ryu K-S, Pääkkönen K, et al. Structural insight into dimeric interaction of the SARAH domains from Mst1 and RASSF family proteins in the apoptosis pathway. Proc Natl Acad Sci U S A. 2007;104(22):9236–41. doi:10.1073/pnas.0610716104.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ikeda M, Hirabayashi S, Fujiwara N, et al. Ras-association domain family protein 6 induces apoptosis via both caspase-dependent and caspase-independent pathways. Exp Cell Res. 2007;313(7):1484–95. doi:10.1016/j.yexcr.2007.02.013.CrossRefPubMedGoogle Scholar
  76. Ikeda M, Kawata A, Nishikawa M, et al. Hippo pathway-dependent and -independent roles of RASSF6. Sci Signal. 2009;2(90):ra59. doi:10.1126/scisignal.2000300.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ishiguro K, Avruch J, Landry A, et al. Nore1B regulates TCR signaling via Ras and Carma1. Cell Signal. 2006;18(10):1647–54. doi:10.1016/j.cellsig.2006.01.015.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Iwasa H, Kudo T, Maimaiti S, et al. The RASSF6 tumor suppressor protein regulates apoptosis and the cell cycle via MDM2 protein and p53 protein. J Biol Chem. 2013;288(42):30320–9. doi:10.1074/jbc.M113.507384.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Jacquemart IC, Springs AEB, Chen WY. Rassf3 is responsible in part for resistance to mammary tumor development in neu transgenic mice. Int J Oncol. 2009;34(2):517–28.PubMedPubMedCentralGoogle Scholar
  80. James D, Levine AJ, Besser D, Hemmati-Brivanlou A. TGF beta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem. Development. 2005;132(6):1273–82. doi:10.1242/dev.01706.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Jin J, Smith FD, Stark C, et al. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol. 2004;14(16):1436–50. doi:10.1016/j.cub.2004.07.051.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92. doi:10.1016/j.cell.2007.01.029.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Jung HY, Jung JS, Whang YM, Kim YH, Jung Hae-Yun Jung Jun Seok WYMKYH. RASSF1A suppresses cell migration through inactivation of HDAC6 and increase of acetylated alpha-tubulin. Cancer Res Treat. 2013;45(2):134–44. doi:10.4143/crt.2013.45.2.134.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kaira K, Sunaga N, Tomizawa Y, et al. Epigenetic inactivation of the RAS-effector gene RASSF2 in lung cancers. Int J Oncol. 2007. doi:10.3892/ijo.31.1.169.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Kanzaki H, Hanafusa H, Yamamoto H, et al. Single nucleotide polymorphism at codon 133 of the RASSF1 gene is preferentially associated with human lung adenocarcinoma risk. Cancer Lett. 2006;238(1):128–34. doi:10.1016/j.canlet.2005.07.006.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Katagiri K, Maeda A, Shimonaka M, Kinashi T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol. 2003;4(8):741–8. doi:10.1038/ni950.CrossRefPubMedGoogle Scholar
  87. Katagiri K, Imamura M, Kinashi T. Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat Immunol. 2006;7(9):919–28. doi:10.1038/ni1374.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Kaverina I, Straube A. Regulation of cell migration by dynamic microtubules. Semin Cell Dev Biol. 2011;22(9):968–74. doi:10.1016/j.semcdb.2011.09.017.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Khokhlatchev A, Rabizadeh S, Xavier R, et al. Identification of a novel Ras-regulated proapoptotic pathway. Curr Biol. 2002;12(4):253–65. doi:10.1016/S0960-9822(02)00683-8.CrossRefPubMedGoogle Scholar
  90. Kim ST, Lim DS, Canman CE, Kastan MB. Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem. 1999;274(53):37538–43.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kim D-H, Kim JS, Park J-H, et al. Relationship of Ras association domain family 1 methylation and K-ras mutation in primary non-small cell lung cancer. Cancer Res. 2003;63(19):6206–11.PubMedPubMedCentralGoogle Scholar
  92. Kita R, Fraser HB. Local adaptation of sun-exposure-dependent gene expression regulation in human skin. Tishkoff SA, ed. PLOS Genet. 2016;12(10):e1006382. doi:10.1371/journal.pgen.1006382.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Kitagawa D, Kajiho H, Negishi T, et al. Release of RASSF1C from the nucleus by Daxx degradation links DNA damage and SAPK/JNK activation. EMBO J. 2006;25(14):3286–97. doi:10.1038/sj.emboj.7601212.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Kok K, Naylor SL, Buys CH. Deletions of the short arm of chromosome 3 in solid tumors and the search for suppressor genes. Adv Cancer Res. 1997;71:27–92.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kudo T, Ikeda M, Nishikawa M, et al. The RASSF3 candidate tumor suppressor induces apoptosis and G1-S cell-cycle arrest via p53. Cancer Res. 2012;72(11):2901–11. doi:10.1158/0008-5472.CAN-12-0572.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Kumari G, Singhal PK, Rao MRKS, Mahalingam S. Nuclear transport of Ras-associated tumor suppressor proteins: different transport receptor binding specificities for arginine-rich nuclear targeting signals. J Mol Biol. 2007;367(5):1294–311. doi:10.1016/j.jmb.2007.01.026.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Kumari G, Singhal PK, Suryaraja R, Mahalingam S. Functional interaction of the Ras effector RASSF5 with the tyrosine kinase lck: critical role in nucleocytoplasmic transport and cell cycle regulation. J Mol Biol. 2010;397(1):89–109. doi:10.1016/j.jmb.2010.01.005.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Law J, Salla M, Zare A, et al. Modulator of apoptosis 1 (MOAP-1) is a tumor suppressor protein linked to the RASSF1A protein. J Biol Chem. 2015;290(40):24100–18. doi:10.1074/jbc.M115.648345.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Lee CK, Lee J-H, Lee M-G, et al. Epigenetic inactivation of the NORE1 gene correlates with malignant progression of colorectal tumors. BMC Cancer. 2010;10:577. doi:10.1186/1471-2407-10-577.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Lee C-M, Yang P, Chen L-C, et al. A novel role of RASSF9 in maintaining epidermal homeostasis. Beier F, ed. PLoS One. 2011;6(3):e17867. doi:10.1371/journal.pone.0017867.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Lee D, Park S-J, Sung KS, et al. Mdm2 associates with Ras effector NORE1 to induce the degradation of oncoprotein HIPK1. EMBO Rep. 2012;13(2):163–9. doi:10.1038/embor.2011.235.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Lerman MI, Minna JD. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res. 2000;60(21):6116–33.PubMedPubMedCentralGoogle Scholar
  103. Li J, Zhang Z, Dai Z, et al. RASSF1A promoter methylation and Kras2 mutations in non small cell lung cancer. Neoplasia. 2003;5(4):362–6.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Li J, Wang F, Protopopov A, et al. Inactivation of RASSF1C during in vivo tumor growth identifies it as a tumor suppressor gene. Oncogene. 2004;23(35):5941–9. doi:10.1038/sj.onc.1207789.CrossRefPubMedGoogle Scholar
  105. Li X, Zhao G, Wang Y, Zhang J, Duan Z, Xin S. RASSF7 and RASSF8 proteins are predictive factors for development and metastasis in malignant thyroid neoplasms. J Cancer Res Ther. 2013;9 (Suppl 7):S173–7. doi:10.4103/0973–1482.122519.Google Scholar
  106. Lian I, Kim J, Okazawa H, et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 2010;24(11):1106–18. doi:10.1101/gad.1903310.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Liang G-P, Su Y-Y, Chen J, Yang Z-C, Liu Y-S, Luo X-D. Analysis of the early adaptive response of endothelial cells to hypoxia via a long serial analysis of gene expression. Biochem Biophys Res Commun. 2009;384:415–9. doi:10.1016/j.bbrc.2009.04.160.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Liu L, Katrin Baier RHD & GPP. The tumor suppressor RASSF1A does not interact with Cdc20, an activator of the anaphase promoting complex. Cell Cycle. 2007;6(13):1663–5.CrossRefPubMedGoogle Scholar
  109. Liu L, Tommasi S, Lee D-H, Dammann R, Pfeifer GP. Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene. 2003;22(50):8125–36. doi:10.1038/sj.onc.1206984.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Liu Z-H, Huo J-L, Wu Z-G, et al. RASSF7 expression and its regulatory roles on apoptosis in human intervertebral disc degeneration. Int J Clin Exp Pathol. 2015;8(12):16097–103.PubMedPubMedCentralGoogle Scholar
  111. Lo KW, Kwong J, Hui AB, et al. High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res. 2001;61(10):3877–81.PubMedPubMedCentralGoogle Scholar
  112. Lock FE, Underhill-Day N, Dunwell T, et al. The RASSF8 candidate tumor suppressor inhibits cell growth and regulates the Wnt and NF-κB signaling pathways. Oncogene. 2010;29(30):4307–16. doi:10.1038/onc.2010.192.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Logsdon CD, Simeone DM, Binkley C, et al. Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res. 2003;63(10):2649–57.PubMedPubMedCentralGoogle Scholar
  114. Lorenzato A, Martino C, Dani N, et al. The cellular apoptosis susceptibility CAS/CSE1L gene protects ovarian cancer cells from death by suppressing RASSF1C. FASEB J. 2012;26(6):2446–56. doi:10.1096/fj.11-195982.CrossRefPubMedGoogle Scholar
  115. Lowe AW, Olsen M, Hao Y, et al. Gene expression patterns in pancreatic tumors, cells and tissues. PLoS One. 2007;2(3):1–11. doi:10.1371/journal.pone.0000323.CrossRefGoogle Scholar
  116. Macheiner D, Heller G, Kappel S, et al. NORE1B, a candidate tumor suppressor, is epigenetically silenced in human hepatocellular carcinoma. J Hepatol. 2006;45(1):81–9. doi:10.1016/j.jhep.2005.12.017.CrossRefPubMedGoogle Scholar
  117. Malpeli G, Amato E, Dandrea M, et al. Methylation-associated down-regulation of RASSF1A and up-regulation of RASSF1Cin pancreatic endocrine tumors. BMC Cancer. 2011;11(1):351. doi:10.1186/1471-2407-11-351.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Matallanas D, Romano D, Yee K, et al. RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell. 2007;27(6):962–75. doi:10.1016/j.molcel.2007.08.008.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Matallanas D, Romano D, Al-Mulla F, et al. Mutant K-Ras activation of the proapoptotic MST2 pathway is antagonized by wild-type K-Ras. Mol Cell. 2011;44(6):893–906. doi:10.1016/j.molcel.2011.10.016.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Mezzanotte JJ, Hill V, Lee Schmidt M, et al. RASSF6 exhibits promoter hypermethylation in metastatic melanoma and inhibits invasion in melanoma cells. Epigenetics. 2014;9(11):1496–503. doi:10.4161/15592294.2014.983361.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Michifuri Y, Hirohashi Y, Torigoe T, et al. Small proline-rich protein-1B is overexpressed in human oral squamous cell cancer stem-like cells and is related to their growth through activation of MAP kinase signal. Biochem Biophys Res Commun. 2013;439(1):96–102. doi:10.1016/j.bbrc.2013.08.021.CrossRefPubMedPubMedCentralGoogle Scholar
  122. Morris MR, Hesson LB, Wagner KJ, et al. Multigene methylation analysis of Wilms’ tumour and adult renal cell carcinoma. Oncogene. 2003a;22(43):6794–801. doi:10.1038/sj.onc.1206914.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Morris JA, Kandpal G, Ma L, Austin CP. DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum Mol Genet. 2003b;12(13):1591–608. doi:10.1093/hmg/ddg162.CrossRefPubMedPubMedCentralGoogle Scholar
  124. Moshnikova A, Frye J, Shay JW, Minna JD, Khokhlatchev AV. The growth and tumor suppressor NORE1A is a cytoskeletal protein that suppresses growth by inhibition of the ERK pathway. J Biol Chem. 2006;281(12):8143–52. doi:10.1074/jbc.M511837200.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Mutter GL, Baak JPA, Fitzgerald JT, et al. Global expression changes of constitutive and hormonally regulated genes during endometrial neoplastic transformation. Gynecol Oncol. 2001;83(2):177–85. doi:10.1006/gyno.2001.6352.CrossRefPubMedPubMedCentralGoogle Scholar
  126. Nakamura N, Carney JA, Jin L, et al. RASSF1A and NORE1A methylation and BRAFV600E mutations in thyroid tumors. Lab Investig. 2005;85(9):1065–75. doi:10.1038/labinvest.3700306.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Nakamura T, Yasuda S, Nagai H, et al. Longest neurite-specific activation of Rap1B in hippocampal neurons contributes to polarity formation through RalA and Nore1A in addition to PI3-kinase. Genes to Cells. 2013;18(11):1020–31. doi:10.1111/gtc.12097.CrossRefPubMedPubMedCentralGoogle Scholar
  128. Newton AC. Protein kinase C. Seeing two domains. Curr Biol. 1995;5(9):973–6. doi:10.1016/S0960-9822(95)00191-6.CrossRefPubMedPubMedCentralGoogle Scholar
  129. Nosho K, Yamamoto H, Takahashi T, et al. Genetic and epigenetic profiling in early colorectal tumors and prediction of invasive potential in pT1 (early invasive) colorectal cancers. Carcinogenesis. 2007;28(6):1364–70. doi:10.1093/carcin/bgl246.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Nybakken K, Vokes SA, Lin TY, McMahon AP, Perrimon N. A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nat Genet. 2005;37. doi:10.1038/ng1682.CrossRefPubMedPubMedCentralGoogle Scholar
  131. Oceandy D, Pickard A, Prehar S, et al. Tumor suppressor Ras-association domain family 1 isoform A is a novel regulator of cardiac hypertrophy. Circulation. 2009;120(7):607–U125. doi:10.1161/Circulationaha.109.868554.CrossRefPubMedPubMedCentralGoogle Scholar
  132. Ortiz-Vega S, Khokhlatchev A, Nedwidek M, et al. The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1. Oncogene. 2002;21(9):1381–90. doi:10.1038/sj.onc.1205192.CrossRefPubMedGoogle Scholar
  133. Park H-W, Kang HC, Kim I-J, et al. Correlation between hypermethylation of theRASSF2A promoter and K-ras/BRAF mutations in microsatellite-stable colorectal cancers. Int J Cancer. 2007;120(1):7–12. doi:10.1002/ijc.22276.CrossRefPubMedPubMedCentralGoogle Scholar
  134. Park J, Kang SI, Lee S-Y, et al. Tumor suppressor ras association domain family 5 (RASSF5/NORE1) mediates death receptor ligand-induced apoptosis. J Biol Chem. 2010;285(45):35029–38. doi:10.1074/jbc.M110.165506.CrossRefPubMedPubMedCentralGoogle Scholar
  135. Pefani DE, Latusek R, Pires I, et al. RASSF1A-LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2. Nat Cell Biol. 2014. doi:10.1038/ncb3035.CrossRefPubMedPubMedCentralGoogle Scholar
  136. Pefani DE, Pankova D, Abraham AG, et al. TGF-beta targets the hippo pathway scaffold RASSF1A to facilitate YAP/SMAD2 nuclear translocation. Mol Cell. 2016;63(1):156–66. doi:10.1016/j.molcel.2016.05.012.CrossRefPubMedPubMedCentralGoogle Scholar
  137. Pelosi G, Fumagalli C, Trubia M, et al. Dual role of RASSF1 as a tumor suppressor and an oncogene in neuroendocrine tumors of the lung. Anticancer Res. 2010;30(10):4269–81. http://www.ncbi.nlm.nih.gov/pubmed/21036752.
  138. Ponting CP, Benjamin DR. A novel family of Ras-binding domains. Trends Biochem Sci. 1996;21(11):422–5. http://www.ncbi.nlm.nih.gov/pubmed/8987396.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Porteous DJ, Millar JK, Brandon NJ, Sawa A. DISC1 at 10: connecting psychiatric genetics and neuroscience. Trends Mol Med. 2011;17(12):699–706. doi:10.1016/j.molmed.2011.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  140. Praskova M, Khoklatchev A, Ortiz-Vega S, Avruch J. Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem J. 2004;381(Pt 2):453–62. doi:10.1042/BJ20040025.CrossRefPubMedPubMedCentralGoogle Scholar
  141. Rabizadeh S, Xavier RJ, Ishiguro K, et al. The scaffold protein CNK1 interacts with the tumor suppressor RASSF1A and augments RASSF1A-induced cell death. J Biol Chem. 2004;279(28):29247–54. doi:10.1074/jbc.M401699200.CrossRefPubMedGoogle Scholar
  142. Recino A, Sherwood V, Flaxman A, et al. Human RASSF7 regulates the microtubule cytoskeleton and is required for spindle formation, Aurora B activation and chromosomal congression during mitosis. Biochem J. 2010;430(2):207–13. doi:10.1042/BJ20100883.CrossRefPubMedPubMedCentralGoogle Scholar
  143. Reeves N, Posakony JW. Genetic programs activated by proneural proteins in the developing Drosophila PNS. Dev Cell. 2005;8. doi:10.1016/j.devcel.2005.01.020.CrossRefPubMedPubMedCentralGoogle Scholar
  144. Reeves ME, Baldwin SW, Baldwin ML, et al. Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis. BMC Cancer. 2010;10:562. doi:10.1186/1471-2407-10-562.CrossRefPubMedPubMedCentralGoogle Scholar
  145. Reeves ME, Baldwin ML, Aragon R, et al. RASSF1C modulates the expression of a stem cell renewal gene, PIWIL1. BMC Res Notes. 2012;5:239. doi:10.1186/1756-0500-5-239.CrossRefPubMedPubMedCentralGoogle Scholar
  146. Reeves ME, Firek M, Chen S-TT, Amaar Y. The RASSF1 gene and the opposing effects of the RASSF1A and RASSF1C isoforms on cell proliferation and apoptosis. Mol Biol Int. 2013;2013:145096. doi:10.1155/2013/145096.CrossRefPubMedPubMedCentralGoogle Scholar
  147. Reeves MME, Firek M, Chen S-TS-TTS, et al. Evidence that RASSF1C stimulation of lung cancer cell proliferation depends on IGFBP-5 and PIWIL1 expression levels. Pallante P, ed. PLoS One. 2014;9(7):e101679. doi:10.1371/journal.pone.0101679.CrossRefPubMedPubMedCentralGoogle Scholar
  148. Reifenberger J, Knobbe CB, Sterzinger AA, et al. Frequent alterations of Ras signaling pathway genes in sporadic malignant melanomas. Int J Cancer. 2004;109(3):377–84. doi:10.1002/ijc.11722.CrossRefPubMedPubMedCentralGoogle Scholar
  149. Richter AM, Pfeifer GP, Dammann RH. The RASSF proteins in cancer; from epigenetic silencing to functional characterization. Biochim Biophys Acta. 2009;1796(2):114–28. doi:10.1016/j.bbcan.2009.03.004.CrossRefPubMedPubMedCentralGoogle Scholar
  150. Richter AM, Walesch SK, Würl P, Taubert H, Dammann RH. The tumor suppressor RASSF10 is upregulated upon contact inhibition and frequently epigenetically silenced in cancer. Oncogenesis. 2012;1(6):e18. doi:10.1038/oncsis.2012.18.CrossRefPubMedPubMedCentralGoogle Scholar
  151. Richter AM, Zimmermann T, Haag T, Walesch SK, Dammann RH. Promoter methylation status of Ras-association domain family members in pheochromocytoma. Front Endocrinol. 2015;6:21. doi:10.3389/fendo.2015.00021.CrossRefGoogle Scholar
  152. Rodriguez-Viciana P, Sabatier C, McCormick F. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol Cell Biol. 2004;24(11):4943–54. doi:10.1128/MCB.24.11.4943-4954.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  153. Rong R, Jin W, Zhang J, Saeed Sheikh M, Huang Y. Tumor suppressor RASSF1A is a microtubule-binding protein that stabilizes microtubules and induces G2/M arrest. Oncogene. 2004;23(50):8216–30. doi:10.1038/sj.onc.1207901.CrossRefPubMedPubMedCentralGoogle Scholar
  154. Rong R, Jiang LY, Sheikh MS, Huang Y. Mitotic kinase Aurora-A phosphorylates RASSF1A and modulates RASSF1A-mediated microtubule interaction and M-phase cell cycle regulation. Oncogene. 2007;26(55):7700–8. doi:10.1038/sj.onc.1210575.CrossRefPubMedPubMedCentralGoogle Scholar
  155. Rykova EY, Skvortsova TE, Hoffmann AL, et al. Breast cancer diagnostics based on extracellular DNA and RNA circulating in blood. Biochem Suppl Ser B Biomed Chem. 2008;2(2):208–13. doi:10.1134/S1990750808020133.CrossRefGoogle Scholar
  156. Sánchez-Tomé E, Rivera B, Perea J, et al. Genome-wide linkage analysis and tumoral characterization reveal heterogeneity in familial colorectal cancer type X. J Gastroenterol. 2015;50(6):657–66. doi:10.1007/s00535-014-1009-0.CrossRefPubMedPubMedCentralGoogle Scholar
  157. Schagdarsurengin U, Richter AM, Wöhler C, Dammann RH. Frequent epigenetic inactivation of RASSF10 in thyroid cancer. Epigenetics. 2009;4(8):571–6. doi:10.4161/epi.4.8.10056.CrossRefPubMedPubMedCentralGoogle Scholar
  158. Scheel H, Hofmann K. A novel inter action motif, SARAH, connects three classes of tumor suppressor. Curr Biol. 2003;13(23):R899–900. doi:10.1016/j.cub.2003.11.007.CrossRefPubMedPubMedCentralGoogle Scholar
  159. Schmidt M, Calvisi D, Clark G. NORE1A regulates MDM2 via β-TrCP. Cancers (Basel). 2016;8(4):39. doi:10.3390/cancers8040039.CrossRefGoogle Scholar
  160. Sekido, Y., Ahmadian, M., II, W., Latif, F., Bader, S., Wei, M. H., … Minna, J. D. Cloning of a breast cancer homozygous deletion junction narrows the region of search for a 3p21.3 tumor suppressor gene. Oncogene, 1998;16(24):3151–3157. http://doi.org/10.1038/sj.onc.1201858.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Sherwood V, Manbodh R, Sheppard C, ADC. RASSF7 is a member of a new family of RAS association domain-containing proteins and is required for completing mitosis. Mol Biol Cell. 2008;19(4):1772–82.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Shivakumar L, Minna J, Sakamaki T, Pestell R, White MA. The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol. 2002;22(12):4309–18. http://www.ncbi.nlm.nih.gov/pubmed/12024041.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Song MS, Song SJ, Kim SY, Oh HJ, Lim DS. The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex. EMBO J. 2008;27(13):1863–74. doi:10.1038/emboj.2008.115.CrossRefPubMedPubMedCentralGoogle Scholar
  164. Song SJ, Song MS, Kim SJ, et al. Aurora A regulates prometaphase progression by inhibiting the ability of RASSF1A to suppress APC-Cdc20 activity. Cancer Res. 2009;69(6):2314–23.PubMedPubMedCentralCrossRefGoogle Scholar
  165. Song H, Oh S, Oh HJ, Lim D-S. Role of the tumor suppressor RASSF2 in regulation of MST1 kinase activity. Biochem Biophys Res Commun. 2010;391(1):969–73. doi:10.1016/j.bbrc.2009.11.175.CrossRefPubMedPubMedCentralGoogle Scholar
  166. Steiner G, Cairns P, Polascik TJ, et al. High-density mapping of chromosomal arm 1q in renal collecting duct carcinoma: region of minimal deletion at 1q32.1–32.2. Cancer Res. 1996;56(21):5044–6.PubMedPubMedCentralGoogle Scholar
  167. Strano S, Monti O, Pediconi N, et al. The transcriptional coactivator Yes-associated protein drives p73 gene-target specificity in response to DNA damage. Mol Cell. 2005;18(4):447–59. doi:10.1016/j.molcel.2005.04.008.CrossRefPubMedPubMedCentralGoogle Scholar
  168. Sun M, Chen M, Dawood F, et al. Tumor necrosis factor-α mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation. 2007;115(11):1398–1407PubMedPubMedCentralCrossRefGoogle Scholar
  169. Sundaresan V, Ganly P, Hasleton P, et al. p53 and chromosome 3 abnormalities, characteristic of malignant lung tumours, are detectable in preinvasive lesions of the bronchus. Oncogene. 1992;7(10):1989–97.PubMedPubMedCentralGoogle Scholar
  170. Sup Song M, Sook Chang J, Jeong Song S, Hong Yang T, Lee H, Lim D-S. The centrosomal protein RAS association domain family protein 1A (RASSF1A)-binding protein 1 regulates mitotic progression by recruiting RASSF1A to spindle poles. J Biol Chem. 2004. doi:10.1074/jbc.M409115200.CrossRefGoogle Scholar
  171. Suryaraja R, Anitha M, Anbarasu K, Kumari G, Mahalingam S, Ca I. The E3 ubiquitin ligase Itch regulates tumor suppressor protein RASSF5/NORE1 stability in an acetylation-dependent manner. Cell Death Dis. 2013;4(3):e565. doi:10.1038/cddis.2013.91.CrossRefPubMedPubMedCentralGoogle Scholar
  172. Takahashi S, Ebihara A, Kajiho H, Kontani K, Nishina H, Katada T. RASSF7 negatively regulates pro-apoptotic JNK signaling by inhibiting the activity of phosphorylated-MKK7. Cell Death Differ. 2011;18(4):645–55. doi:10.1038/cdd.2010.137.CrossRefPubMedPubMedCentralGoogle Scholar
  173. Tan DSP, Lambros MBK, Rayter S, et al. PPM1D is a potential therapeutic target in ovarian clear cell carcinomas. Clin Cancer Res. 2009;15(7):2269–80. doi:10.1158/1078-0432.CCR-08-2403.CrossRefPubMedPubMedCentralGoogle Scholar
  174. Teng IW, Hou PC, Lee KD, et al. Targeted methylation of two tumor suppressor genes is sufficient to transform mesenchymal stem cells into cancer stem/initiating cells. Cancer Res. 2011;71(13):4653–63. doi:10.1158/0008-5472.CAN-10-3418.CrossRefPubMedPubMedCentralGoogle Scholar
  175. Thaler S, Hähnel PS, Schad A, Dammann R, Schuler M. RASSF1A mediates p21Cip1/Waf1-dependent cell cycle arrest and senescence through modulation of the Raf-MEK-ERK pathway and inhibition of Akt. Cancer Res. 2009;69(5):1748–57.CrossRefPubMedGoogle Scholar
  176. Tommasi S, Dammann R, Jin S-GG, Zhang XF, Avruch J, Pfeifer GP. RASSF3 and NORE1: identification and cloning of two human homologues of the putative tumor suppressor gene RASSF1. Oncogene. 2002;21(17):2713–20. doi:10.1038/sj/onc/1205365.CrossRefPubMedPubMedCentralGoogle Scholar
  177. Tommasi S, Dammann R, Zhang Z, et al. Tumor susceptibility of Rassf1a knockout mice. Cancer Res. 2005;65(1):92 LP-98.Google Scholar
  178. Topaloglu O, Hoque MO, Tokumaru Y, et al. Detection of promoter hypermethylation of multiple genes in the tumor and bronchoalveolar lavage of patients with lung cancer. Clin Cancer Res. 2004;10(7):2284–8.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Underhill-Day N, Hill V, Latif F. N-terminal RASSF family: RASSF7-RASSF10. Epigenetics. 2011;6(3):284–92. doi:10.4161/epi.6.3.14108.CrossRefPubMedPubMedCentralGoogle Scholar
  180. van der Weyden L, Adams DJ. The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta. 2007;1776(1):58–85. doi:10.1016/j.bbcan.2007.06.003.CrossRefPubMedPubMedCentralGoogle Scholar
  181. van der Weyden L, Tachibana KK, Gonzalez MA, et al. The RASSF1A isoform of RASSF1 promotes microtubule stability and suppresses tumorigenesis. Mol Cell Biol. 2005;25(18):8356–67. doi:10.1128/MCB.25.18.8356-8367.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  182. van Engeland M, Roemen GM, Brink M, et al. K-ras mutations and RASSF1A promoter methylation in colorectal cancer. Oncogene. 2002;21(23):3792–5. doi:10.1038/sj.onc.1205466.CrossRefPubMedPubMedCentralGoogle Scholar
  183. van Hemert MJ, Steensma HY, van Heusden GPH. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. BioEssays. 2001;23(10):936–46. doi:10.1002/bies.1134.CrossRefPubMedPubMedCentralGoogle Scholar
  184. Varelas X, Sakuma R, Samavarchi-Tehrani P, et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 2008;10(7):837–48. doi:10.1038/ncb1748.CrossRefPubMedPubMedCentralGoogle Scholar
  185. Vasseur S, Malicet C, Calvo EL, et al. Gene expression profiling by DNA microarray analysis in mouse embryonic fibroblasts transformed by rasV12 mutated protein and the E1A oncogene. Mol Cancer. 2003;2(1):19. doi:10.1186/1476-4598-2-19.CrossRefPubMedPubMedCentralGoogle Scholar
  186. Vavvas D, Li X, Avruch J, Zhang X-F. Identification of Nore1 as a potential Ras effector. J Biol Chem. 1998;273(10):5439–42. doi:10.1074/jbc.273.10.5439.CrossRefPubMedPubMedCentralGoogle Scholar
  187. Vlahov N, Scrace S, Soto MS, et al. Alternate RASSF1 transcripts control SRC activity, E-cadherin contacts, and YAP-mediated invasion. Curr Biol. 2015;25:1–16. doi:10.1016/j.cub.2015.09.072.CrossRefPubMedPubMedCentralGoogle Scholar
  188. Vos MD, Ellis CA, Bell A, Birrer MJ, Clark GJ. Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem. 2000;275(46):35669–72. doi:10.1074/jbc.C000463200.CrossRefPubMedPubMedCentralGoogle Scholar
  189. Vos MD, Ellis CA, Elam C, Ulku AS, Taylor BJ, Clark GJ. RASSF2 is a novel K-Ras-specific effector and potential tumor suppressor. J Biol Chem. 2003a;278(30):28045–51. doi:10.1074/jbc.M300554200.CrossRefPubMedGoogle Scholar
  190. Vos MD, Martinez A, Ellis CA, Vallecorsa T, Clark GJ. The pro-apoptotic Ras effector Nore1 may serve as a Ras-regulated tumor suppressor in the lung. J Biol Chem. 2003b;278(24):21938–43. doi:10.1074/jbc.M211019200.CrossRefPubMedPubMedCentralGoogle Scholar
  191. Vos MD, Martinez A, Elam C, et al. A role for the RASSF1A tumor suppressor in the regulation of tubulin polymerization and genomic stability. Cancer Res. 2004;64(12):4244–4250.PubMedPubMedCentralCrossRefGoogle Scholar
  192. Vos MD, Dallol A, Eckfeld K, et al. The RASSF1A tumor suppressor activates Bax via MOAP-1. J Biol Chem. 2006;281. doi:10.1074/jbc.M512128200.CrossRefPubMedPubMedCentralGoogle Scholar
  193. Wang J, Hua W, Huang SK, et al. RASSF8 regulates progression of cutaneous melanoma through nuclear factor-κb. Oncotarget. 2015;6(30):30165–77. doi:10.18632/oncotarget.5030.CrossRefPubMedPubMedCentralGoogle Scholar
  194. Wang S, Liang Q, Qiao H, et al. DISC1 regulates astrogenesis in the embryonic brain via modulation of RAS/MEK/ERK signaling through RASSF7. Development. 2016;143(15):2732–40. doi:10.1242/dev.133066.CrossRefPubMedPubMedCentralGoogle Scholar
  195. Wang Y, Yu A, Yu F-X. The Hippo pathway in tissue homeostasis and regeneration. Protein Cell. 2017. doi:10.1007/s13238-017-0371-0.CrossRefGoogle Scholar
  196. Weitzel JN, Kasperczyk A, Mohan C, Krontiris TG. The HRAS1 gene cluster: two upstream regions recognizing transcripts and a third encoding a gene with a leucine zipper domain. Genomics. 1992;14(2):309–19. doi:10.1016/s0888-7543(05)80221-6.CrossRefPubMedPubMedCentralGoogle Scholar
  197. Wen Y, Wang Q, Zhou C, et al. Decreased expression of RASSF6 is a novel independent prognostic marker of a worse outcome in gastric cancer patients after curative surgery. Ann Surg Oncol. 2011;7–11. doi:10.1245/s10434–011–1668-5.Google Scholar
  198. Wistuba II, Bryant D, Behrens C, et al. Comparison of features of human lung cancer cell lines and their corresponding tumors. Clin Cancer Res. 1999;5(5):991–1000.PubMedPubMedCentralGoogle Scholar
  199. Wistuba II, Behrens C, Virmani AK, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res. 2000;60(7):1949–60.PubMedPubMedCentralGoogle Scholar
  200. Yamamoto T, Taya S, Kaibuchi K. Ras-induced transformation and signaling pathway. J Biochem. 1999;126(5):799–803. http://www.ncbi.nlm.nih.gov/pubmed/10544270.PubMedPubMedCentralCrossRefGoogle Scholar
  201. Yee KS, Grochola L, Hamilton G, et al. A RASSF1A polymorphism restricts p53/p73 activation and associates with poor survival and accelerated age of onset of soft tissue sarcoma. Cancer Res. 2012;72(9):2206–17. doi:10.1158/0008-5472.CAN-11-2906.CrossRefPubMedPubMedCentralGoogle Scholar
  202. Yokoyama T, Nakano M, Bednarczyk JL, McIntyre BW, Entman M, Mann DL. Tumor necrosis factor-α provokes a hypertrophic growth response in adult cardiac myocytes. Circulation. 1997;95(5):1247–1252PubMedPubMedCentralCrossRefGoogle Scholar
  203. Zhang Z, Sun D, Van DN, Tang A, Hu L, Huang G. Inactivation of RASSF2A by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Int J Cancer. 2007;120(1):32–8. doi:10.1002/ijc.22185.CrossRefPubMedPubMedCentralGoogle Scholar
  204. Zhang M, Wang D, Zhu T, Yin R. RASSF4 overexpression inhibits the proliferation, invasion, EMT, and wnt signaling pathway in osteosarcoma cells. Oncol Res. 2017;25(1):83–91. doi:10.3727/096504016X14719078133447.CrossRefPubMedPubMedCentralGoogle Scholar
  205. Zhou X, Li T-T, Feng X, et al. Targeted polyubiquitylation of RASSF1C by the Mule and SCFβ-TrCP ligases in response to DNA damage. Biochem J. 2012;441(1):227–236PubMedPubMedCentralCrossRefGoogle Scholar
  206. Zhou X-H, Yang C-Q, Zhang C-L, Gao Y, Yuan H-B, Wang C. RASSF5 inhibits growth and invasion and induces apoptosis in osteosarcoma cells through activation of MST1/LATS1 signaling. Oncol Rep. 2014. doi:10.3892/or.2014.3387.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Oncology, CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK