Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Stromal Interaction Molecule

  • Wesley H. Brooks
  • Sreya Mukherjee
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101840

Synonyms

 GOK;  STIM1;  STIM2

Historical Background

STIM1 is a key protein in initiation of calcium flux. STIM1 senses and reacts to changes in the levels of stored calcium ions (Ca+2) in a cell. Cells keep tight control on many important intracellular calcium-dependent processes by controlling the availability of free Ca+2, maintaining low levels of free Ca+2 in the cytosol relative to extracellular and stored intracellular Ca+2 levels. In calcium flux, intracellular release of stored Ca+2 ions, primarily stored in the endoplasmic reticulum (ER) of non-muscle cells or in the sarcoplasmic reticulum in muscle cells, can initiate specific calcium-dependent activities in the cell, such as enzyme activation. The release of stored Ca+2 into the cytosol then triggers an influx of extracellular Ca+2 through cell membrane channels to amplify the calcium-dependent activities. This is referred to as SOCE (storage-operated calcium entry). The extracellular Ca+2ions enter through CRAC channels...

This is a preview of subscription content, log in to check access.

References

  1. Aytes A, Mollevi D, Martinez-Iniesta M, Nadal M, Vidal A, Morales A, Salazar R, Capella G, Villaneuva A. Stromal interaction molecule 2 (STIM2) is frequently overexpressed in colorectal tumors and confers a tumor cell growth suppressor phenotype. Mol Carcinog. 2012;51:746–53.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, et al. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 2006;103:16704–9. doi:10.1073/pnas.0608358103.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baba Y, Kurosaki T. Impact of Ca+2 signaling on B cell function. Trends Immunol. 2011;32:589–94.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Chen YT, Chen YF, Chiu WT, Yang YK, Chang HC, Shen MR. The ER Ca+2 sensor STIM1 regulates actomyosin contractility of migratory cells. J Cell Sci. 2013;126:1260–7.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Feske S, Prakriya M. Conformational dynamics of STIM1 activation. Nat Struct Mol Biol. 2013;20:918–20. doi:10.1038/nsmb.2647.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Gruszczynska-Biegala J, Pomorski P, Wisniewska MB, Kuznicki J. Differential roles for STIM1 and STIM2 in store-operated calcium entry in rat neurons. PLoS One. 2011;6:e19285. doi:10.1371/journal.pone.0019285.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Johnstone LS, Graham SJL, Dziadek MA. STIM proteins: integrators of signaling pathways in development, differentiation and disease. J Cell Mol Med. 2010;14:1890–903.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Lang F, Eylenstein A, Shumilina E. Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK. Cell Calcium. 2012;52:347–54. doi:10.1016/j.ceca.2012.05.005.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Mukherjee S, Brooks WH. Stromal interaction molecules as important therapeutic targets in diseases with dysregulated calcium flux. Biochim Biophys Acta, Mol Cell Res. 2014;1843:2307–14. doi:10.1016/j.bbamcr.2014.03.0190167-4889.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Notarangela LD. Functional T cell immunodeficiencies. Annu Rev Immunol. 2013;31:195–225.CrossRefGoogle Scholar
  11. Parker NJ, Begley CG, Smith PJ, Fox RM. Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. Genomics. 1996;37:253–6. doi:10.1006/geno.1996.0553.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Pozo-Guisado E, Casas-Rua V, Tomas-Martin P, Lopez-Guerrero AM, Alvarez-Barrientos A, Martin-Romero FJ. Phosphorylation of STIM1 at ERK1/2 target sites regulates interaction with the microtubule plus-end binding protein EB1. J Cell Sci. 2013;126:3170–80. doi:10.1242/jcs.125054.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Richard III CW, Boehnke M, Berg D, Lichy JH, Meeker TC, Hauser E, et al. A radiation hybrid map of the distal short arm of human chromosome 11, containing the Beckwith–Wiedemann and associated embryonal tumor disease loci. Am J Hum Genet. 1993;52:915–21.PubMedPubMedCentralGoogle Scholar
  14. Robert V, Triffaux E, Savignac M, Pelletier L. Calcium signaling in T-lymphocytes. Biochimie. 2011;93:2087–94.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Shalygin A, Skopin A, Kalinina V, Zimina O, Glushankova L, Mozhayeva GN, Kaznacheyeva E. STIM1 and STIM2 proteins differently regulate endogenous store-operated channels in HEK293 cells. J Biol Chem. 2014;290:4717–27. doi:10.1074/jbc.M114.601856.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell. 2008;135:110–22. doi:10.1016/j.cell.2008.08.006.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Williams RT, Manji SSM, Parker NJ, Hancock MS, van Stekelenburg L, Eidn JP, et al. Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J. 2001;357:673–85. doi:10.1042/bj3570673.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Williams RT, Senior PV, Van Stekelenburg L, Layton JE, Smith PJ, Dziadek MA. Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation. Biochim Biophys Acta. 2002;1596:131–7. doi:10.1016/S0167-4838(02)00211-X.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Yang N, Tang Y, Wang F, Zhang H, Xu D, Shen Y, Sun S, Yang G. Blockade of store operated Ca+2 entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover. Cancer Lett. 2013;330:163–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature. 2005;437:902–5. doi:10.1038/nature04147.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Zhu-Mauldin X, Marsh SA, Zou L, Marchase RB, Chatham JC. Modification of STIM1 by O-linked N-Acetylglucosamine (O-GlcNAc) attenuates store-operated calcium entry in neonatal cardiomyocytes. J Biol Chem. 2012;287:39094–106. doi:10.1074/jbc.M112.383778.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of South FloridaTampaUSA