Skip to main content

CASK

  • Reference work entry
  • First Online:
Book cover Encyclopedia of Signaling Molecules

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atasoy D, Schoch S, Ho A, Nadasy KA, Liu X, Zhang W, et al. Deletion of CASK in mice is lethal and impairs synaptic function. Proc Natl Acad Sci USA. 2007;104(7):2525–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biederer T, Sudhof TC. CASK and protein 4.1 support F-actin nucleation on neurexins. J Biol Chem. 2001;276(51):47869–76.

    Article  PubMed  CAS  Google Scholar 

  • Burglen L, Chantot-Bastaraud S, Garel C, Milh M, Touraine R, Zanni G, et al. Spectrum of pontocerebellar hypoplasia in 13 girls and boys with CASK mutations: confirmation of a recognizable phenotype and first description of a male mosaic patient. Orphanet J Rare Dis. 2012;7:18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Butz S, Okamoto M, Sudhof TC. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell. 1998;94(6):773–82.

    Article  PubMed  CAS  Google Scholar 

  • Cohen AR, Woods DF, Marfatia SM, Walther Z, Chishti AH, Anderson JM. Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J Cell Biol. 1998;142(1):129–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniels DL, Cohen AR, Anderson JM, Brunger AT. Crystal structure of the hCASK PDZ domain reveals the structural basis of class II PDZ domain target recognition. Nat Struct Biol. 1998;5(4):317–25.

    Article  PubMed  CAS  Google Scholar 

  • Feng W, Long JF, Fan JS, Suetake T, Zhang MJ. The tetrameric L27 domain complex as an organization platform for supramolecular assemblies. Nat Struct Mol Biol. 2004;11(5):475–80.

    Article  PubMed  CAS  Google Scholar 

  • Feng W, Long JF, Zhang MJ. A unified assembly mode revealed by the structures of tetrameric L27 domain complexes formed by mLin-2/mLin-7 and Patj/Pals1 scaffold proteins. Proc Natl Acad Sci USA. 2005;102(19):6861–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hackett A, Tarpey PS, Licata A, Cox J, Whibley A, Boyle J, et al. CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes. Eur J Hum Genet. 2010;18(5):544–52.

    Article  PubMed  CAS  Google Scholar 

  • Hata Y, Butz S, Sudhof TC. CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci. 1996;16(8):2488–94.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Horvitz HR, Sulston JE. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics. 1980;96(2):435–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hoskins R, Hajnal AF, Harp SA, Kim SK. The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development. 1996;122(1):97–111.

    PubMed  CAS  Google Scholar 

  • Hsueh YP, Yang FC, Kharazia V, Naisbitt S, Cohen AR, Weinberg RJ, et al. Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses. J Cell Biol. 1998;142(1):139–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsueh YP, Wang TF, Yang FC, Sheng M. Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature. 2000;404(6775):298–302.

    Article  PubMed  CAS  Google Scholar 

  • Hu HT, Umemori H, Hsueh YP. Postsynaptic SDC2 induces transsynaptic signaling via FGF22 for bidirectional synaptic formation. Sci Rep 2016;6: 33592.

    Google Scholar 

  • Kaech SM, Whitfield CW, Kim SK. The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell. 1998;94(6):761–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LaConte L, Mukherjee K. Structural constraints and functional divergences in CASK evolution. Biochem Soc Trans. 2013;41(4):1017–22.

    Article  PubMed  CAS  Google Scholar 

  • LaConte LE, Chavan V, Mukherjee K. Identification and glycerol-induced correction of misfolding mutations in the X-linked mental retardation gene CASK. PLoS One. 2014;9(2):e88276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LaConte LE, Chavan V, Liang C, Willis J, Schonhense EM, Schoch S, et al. CASK stabilizes neurexin and links it to liprin-alpha in a neuronal activity-dependent manner. Cell Mol Life Sci. 2016;73(18):3599–621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li YH, Spangenberg O, Paarmann I, Konrad M, Lavie A. Structural basis for nucleotide-dependent regulation of membrane-associated guanylate kinase-like domains. J Biol Chem. 2002;277(6):4159–65.

    Article  PubMed  CAS  Google Scholar 

  • Lu CS, Hodge JJ, Mehren J, Sun XX, Griffith LC. Regulation of the Ca2+/CaM-responsive pool of CaMKII by scaffold-dependent autophosphorylation. Neuron. 2003;40(6):1185–97.

    Article  PubMed  CAS  Google Scholar 

  • Martin JR, Ollo R. A new Drosophila Ca2+/calmodulin-dependent protein kinase (Caki) is localized in the central nervous system and implicated in walking speed. EMBO J. 1996;15(8):1865–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maximov A, Sudhof TC, Bezprozvanny I. Association of neuronal calcium channels with modular adaptor proteins. J Biol Chem. 1999;274(35):24453–6.

    Article  PubMed  CAS  Google Scholar 

  • McGee AW, Dakoji SR, Olsen O, Bredt DS, Lim WA, Prehoda KE. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. Mol Cell. 2001;8(6):1291–301.

    Article  PubMed  CAS  Google Scholar 

  • Moog U, Kutsche K, Kortum F, Chilian B, Bierhals T, Apeshiotis N, et al. Phenotypic spectrum associated with CASK loss-of-function mutations. J Med Genet. 2011;48(11):741–51.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee K, Sharma M, Urlaub H, Bourenkov GP, Jahn R, Sudhof TC, et al. CASK Functions as a Mg2+-independent neurexin kinase. Cell. 2008;133(2):328–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukherjee K, Sharma M, Jahn R, Wahl MC, Sudhof TC. Evolution of CASK into a Mg2+-sensitive kinase. Sci Signal. 2010;3(119):ra33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukherjee K, Slawson JB, Christmann BL, Griffith LC. Neuron-specific protein interactions of Drosophila CASK-beta are revealed by mass spectrometry. Front Mol Neurosci. 2014;7:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Najm J, Horn D, Wimplinger I, Golden JA, Chizhikov VV, Sudi J, et al. Mutations of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. Nat Genet. 2008;40(9):1065–7.

    Article  PubMed  CAS  Google Scholar 

  • Samuels BA, Hsueh YP, Shu T, Liang H, Tseng HC, Hong CJ, et al. Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron. 2007;56(5):823–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slawson JB, Kuklin EA, Ejima A, Mukherjee K, Ostrovsky L, Griffith LC. Central regulation of locomotor behavior of Drosophila melanogaster depends on a CASK isoform containing CaMK-like and L27 domains. Genetics. 2011;187(1):171–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slawson JB, Kuklin EA, Mukherjee K, Pirez N, Donelson NC, Griffith LC. Regulation of dopamine release by CASK-beta modulates locomotor initiation in Drosophila melanogaster. Front Behav Neurosci 2014;8: 394.

    Google Scholar 

  • Srivastava S, McMillan R, Willis J, Clark H, Chavan V, Liang C, et al. X-linked intellectual disability gene CASK regulates postnatal brain growth in a non-cell autonomous manner. Acta Neuropathol Commun. 2016;4:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tavares GA, Panepucci EH, Brunger AT. Structural characterization of the intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. Mol Cell. 2001;8(6):1313–25.

    Article  PubMed  CAS  Google Scholar 

  • Wei Z, Zheng S, Spangler SA, Yu C, Hoogenraad CC, Zhang M. Liprin-mediated large signaling complex organization revealed by the liprin-alpha/CASK and liprin-alpha/liprin-beta complex structures. Mol Cell. 2011;43(4):586–98.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Konark Mukherjee is supported by grant from National Eye Institute: R01EY024712-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konark Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mukherjee, K. (2018). CASK. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101833

Download citation

Publish with us

Policies and ethics