Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Konark MukherjeeEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101833


Historical Background

CASK ortholog Lin-2 was discovered in cell-lineage screen in C. elegansnearly 36 years ago. Interest in CASK was revived by three simultaneously published articles in the year 1996 in three different animal models. One of the major interests surrounded CASK’s ability to interact with neurexin, Mint, and veli. These interactions suggested that CASK may be a synaptic scaffold. Lack of specific synaptic defect in different animal models, however, has made this hypothesis untenable. Characterization of the CASK knockout mice, discovery of CASK as a specialized protein kinase, and its association with secondary microcephaly and pontocerebellar hypoplasia have revitalized interest in this enigmatic signaling molecule....

This is a preview of subscription content, log in to check access.



Konark Mukherjee is supported by grant from National Eye Institute: R01EY024712-03.


  1. Atasoy D, Schoch S, Ho A, Nadasy KA, Liu X, Zhang W, et al. Deletion of CASK in mice is lethal and impairs synaptic function. Proc Natl Acad Sci USA. 2007;104(7):2525–30.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Biederer T, Sudhof TC. CASK and protein 4.1 support F-actin nucleation on neurexins. J Biol Chem. 2001;276(51):47869–76.PubMedCrossRefGoogle Scholar
  3. Burglen L, Chantot-Bastaraud S, Garel C, Milh M, Touraine R, Zanni G, et al. Spectrum of pontocerebellar hypoplasia in 13 girls and boys with CASK mutations: confirmation of a recognizable phenotype and first description of a male mosaic patient. Orphanet J Rare Dis. 2012;7:18.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Butz S, Okamoto M, Sudhof TC. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell. 1998;94(6):773–82.PubMedCrossRefGoogle Scholar
  5. Cohen AR, Woods DF, Marfatia SM, Walther Z, Chishti AH, Anderson JM. Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J Cell Biol. 1998;142(1):129–38.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Daniels DL, Cohen AR, Anderson JM, Brunger AT. Crystal structure of the hCASK PDZ domain reveals the structural basis of class II PDZ domain target recognition. Nat Struct Biol. 1998;5(4):317–25.PubMedCrossRefGoogle Scholar
  7. Feng W, Long JF, Fan JS, Suetake T, Zhang MJ. The tetrameric L27 domain complex as an organization platform for supramolecular assemblies. Nat Struct Mol Biol. 2004;11(5):475–80.PubMedCrossRefGoogle Scholar
  8. Feng W, Long JF, Zhang MJ. A unified assembly mode revealed by the structures of tetrameric L27 domain complexes formed by mLin-2/mLin-7 and Patj/Pals1 scaffold proteins. Proc Natl Acad Sci USA. 2005;102(19):6861–6.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Hackett A, Tarpey PS, Licata A, Cox J, Whibley A, Boyle J, et al. CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes. Eur J Hum Genet. 2010;18(5):544–52.PubMedCrossRefGoogle Scholar
  10. Hata Y, Butz S, Sudhof TC. CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci. 1996;16(8):2488–94.PubMedCrossRefGoogle Scholar
  11. Horvitz HR, Sulston JE. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics. 1980;96(2):435–54.PubMedPubMedCentralGoogle Scholar
  12. Hoskins R, Hajnal AF, Harp SA, Kim SK. The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development. 1996;122(1):97–111.PubMedPubMedCentralGoogle Scholar
  13. Hsueh YP, Yang FC, Kharazia V, Naisbitt S, Cohen AR, Weinberg RJ, et al. Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses. J Cell Biol. 1998;142(1):139–51.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Hsueh YP, Wang TF, Yang FC, Sheng M. Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature. 2000;404(6775):298–302.PubMedCrossRefGoogle Scholar
  15. Hu HT, Umemori H, Hsueh YP. Postsynaptic SDC2 induces transsynaptic signaling via FGF22 for bidirectional synaptic formation. Sci Rep 2016;6: 33592.Google Scholar
  16. Kaech SM, Whitfield CW, Kim SK. The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell. 1998;94(6):761–71.PubMedPubMedCentralCrossRefGoogle Scholar
  17. LaConte L, Mukherjee K. Structural constraints and functional divergences in CASK evolution. Biochem Soc Trans. 2013;41(4):1017–22.PubMedCrossRefGoogle Scholar
  18. LaConte LE, Chavan V, Mukherjee K. Identification and glycerol-induced correction of misfolding mutations in the X-linked mental retardation gene CASK. PLoS One. 2014;9(2):e88276.PubMedPubMedCentralCrossRefGoogle Scholar
  19. LaConte LE, Chavan V, Liang C, Willis J, Schonhense EM, Schoch S, et al. CASK stabilizes neurexin and links it to liprin-alpha in a neuronal activity-dependent manner. Cell Mol Life Sci. 2016;73(18):3599–621.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Li YH, Spangenberg O, Paarmann I, Konrad M, Lavie A. Structural basis for nucleotide-dependent regulation of membrane-associated guanylate kinase-like domains. J Biol Chem. 2002;277(6):4159–65.PubMedCrossRefGoogle Scholar
  21. Lu CS, Hodge JJ, Mehren J, Sun XX, Griffith LC. Regulation of the Ca2+/CaM-responsive pool of CaMKII by scaffold-dependent autophosphorylation. Neuron. 2003;40(6):1185–97.PubMedCrossRefGoogle Scholar
  22. Martin JR, Ollo R. A new Drosophila Ca2+/calmodulin-dependent protein kinase (Caki) is localized in the central nervous system and implicated in walking speed. EMBO J. 1996;15(8):1865–76.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Maximov A, Sudhof TC, Bezprozvanny I. Association of neuronal calcium channels with modular adaptor proteins. J Biol Chem. 1999;274(35):24453–6.PubMedCrossRefGoogle Scholar
  24. McGee AW, Dakoji SR, Olsen O, Bredt DS, Lim WA, Prehoda KE. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. Mol Cell. 2001;8(6):1291–301.PubMedCrossRefGoogle Scholar
  25. Moog U, Kutsche K, Kortum F, Chilian B, Bierhals T, Apeshiotis N, et al. Phenotypic spectrum associated with CASK loss-of-function mutations. J Med Genet. 2011;48(11):741–51.PubMedCrossRefGoogle Scholar
  26. Mukherjee K, Sharma M, Urlaub H, Bourenkov GP, Jahn R, Sudhof TC, et al. CASK Functions as a Mg2+-independent neurexin kinase. Cell. 2008;133(2):328–39.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Mukherjee K, Sharma M, Jahn R, Wahl MC, Sudhof TC. Evolution of CASK into a Mg2+-sensitive kinase. Sci Signal. 2010;3(119):ra33.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Mukherjee K, Slawson JB, Christmann BL, Griffith LC. Neuron-specific protein interactions of Drosophila CASK-beta are revealed by mass spectrometry. Front Mol Neurosci. 2014;7:58.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Najm J, Horn D, Wimplinger I, Golden JA, Chizhikov VV, Sudi J, et al. Mutations of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. Nat Genet. 2008;40(9):1065–7.PubMedCrossRefGoogle Scholar
  30. Samuels BA, Hsueh YP, Shu T, Liang H, Tseng HC, Hong CJ, et al. Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron. 2007;56(5):823–37.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Slawson JB, Kuklin EA, Ejima A, Mukherjee K, Ostrovsky L, Griffith LC. Central regulation of locomotor behavior of Drosophila melanogaster depends on a CASK isoform containing CaMK-like and L27 domains. Genetics. 2011;187(1):171–84.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Slawson JB, Kuklin EA, Mukherjee K, Pirez N, Donelson NC, Griffith LC. Regulation of dopamine release by CASK-beta modulates locomotor initiation in Drosophila melanogaster. Front Behav Neurosci 2014;8: 394.Google Scholar
  33. Srivastava S, McMillan R, Willis J, Clark H, Chavan V, Liang C, et al. X-linked intellectual disability gene CASK regulates postnatal brain growth in a non-cell autonomous manner. Acta Neuropathol Commun. 2016;4:30.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Tavares GA, Panepucci EH, Brunger AT. Structural characterization of the intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. Mol Cell. 2001;8(6):1313–25.PubMedCrossRefGoogle Scholar
  35. Wei Z, Zheng S, Spangler SA, Yu C, Hoogenraad CC, Zhang M. Liprin-mediated large signaling complex organization revealed by the liprin-alpha/CASK and liprin-alpha/liprin-beta complex structures. Mol Cell. 2011;43(4):586–98.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.VirginiaTech Carilion Research InstituteRoanokeUSA