Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Yasuyuki SaitoEmail author
  • Yoji Murata
  • Takenori Kotani
  • Takashi MatozakiEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101830


Historical Background, Structure, and Its Ligands

Signal regulatory protein alpha (SIRPα) was initially cloned as a substrate for Src homology region 2 (SH2) domain-containing phosphatase-1 (SHP-1) (Ptpn6) and SHP-2 (Ptpn11). SHP-1 and SHP-2 are cytoplasmic-type protein tyrosine phosphatases and SIRPα was initially termed SHPS-1 (SHP substrate-1) (reviewed in Matozaki et al. 2009; Barclay and van den Berg 2014). SIRPα was also named as brain immunoglobulin (Ig)-like molecule with tyrosine-based activation motifs (BIT), which was a highly phosphorylated glycoprotein in the brain, as well as macrophage fusion receptor (MFR) and MyD-1. SIRPα belongs to SIRP family members, and other two SIRP family members, namely SIRPβ1 and SIRPγ, have a similar structure of SIRPα in their extracellular regions but have different cytoplasmic regions from SIRPα (Matozaki et al. 2009; Barclay and van den Berg 2014).

This is a preview of subscription content, log in to check access.


  1. Barclay AN, van den Berg TK. The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu Rev Immunol. 2014;32:25–50. doi:10.1146/annurev-immunol-032713-120142.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chao MP, Weissman IL, Majeti R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 2012;24:225–32. doi:10.1016/j.coi.2012.01.010.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Gardai SJ, Xiao Y-Q, Dickinson M, Nick JA, Voelker DR, Greene KE, et al. By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell. 2003;115:13–23.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Gitik M, Liraz-Zaltsman S, Oldenborg P-A, Reichert F, Rotshenker S. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α) on phagocytes. J Neuroinflammation. 2011;8:24. doi:10.1186/1742-2094-8-24.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Han MH, Lundgren DH, Jaiswal S, Chao M, Graham KL, Garris CS, et al. Janus-like opposing roles of CD47 in autoimmune brain inflammation in humans and mice. J Exp Med. 2012;209:1325–34. doi:10.1084/jem.20101974.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ishikawa-Sekigami T, Kaneko Y, Okazawa H, Tomizawa T, Okajo J, Saito Y, et al. SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages. Blood. 2006;107:341–8. doi:10.1182/blood-2005-05-1896.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Kanazawa Y, Saito Y, Supriatna Y, Tezuka H, Kotani T, Murata Y, et al. Role of SIRPα in regulation of mucosal immunity in the intestine. Genes Cells. 2010;15:1189–200. doi:10.1111/j.1365-2443.2010.01453.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Liu X, Pu Y, Cron K, Deng L, Kline J, Frazier WA, et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat Med. 2015;21:1209–15. doi:10.1038/nm.3931.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Maruyama T, Kusakari S, Sato-Hashimoto M, Hayashi Y, Kotani T, Murata Y, et al. Hypothermia-induced tyrosine phosphorylation of SIRPα in the brain. J Neurochem. 2012;121:891–902. doi:10.1111/j.1471-4159.2012.07748.x.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Matozaki T, Murata Y, Okazawa H, Ohnishi H. Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends Cell Biol. 2009;19:72–80. doi:10.1016/j.tcb.2008.12.001.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Murata T, Ohnishi H, Okazawa H, Murata Y, Kusakari S, Hayashi Y, et al. CD47 promotes neuronal development through Src- and FRG/Vav2-mediated activation of Rac and Cdc42. J Neurosci. 2006;26:12397–407. doi:10.1523/JNEUROSCI.3981-06.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Murata Y, Kotani T, Ohnishi H, Matozaki T. The CD47-SIRPα signalling system: its physiological roles and therapeutic application. J Biochem. 2014;155:335–44. doi:10.1093/jb/mvu017.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Nuvolone M, Kana V, Hutter G, Sakata D, Mortin-Toth SM, Russo G, et al. SIRPα polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells. J Exp Med. 2013;210:2539–52. doi:10.1084/jem.20131274.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ohnishi H, Kaneko Y, Okazawa H, Miyashita M, Sato R, Hayashi A, et al. Differential localization of Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 and CD47 and its molecular mechanisms in cultured hippocampal neurons. J Neurosci. 2005;25:2702–11. doi:10.1523/JNEUROSCI.5173-04.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ohnishi H, Murata T, Kusakari S, Hayashi Y, Takao K, Maruyama T, et al. Stress-evoked tyrosine phosphorylation of signal regulatory protein α regulates behavioral immobility in the forced swim test. J Neurosci. 2010;30:10472–83. doi:10.1523/JNEUROSCI.0257-10.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Okazawa H, Motegi S-I, Ohyama N, Ohnishi H, Tomizawa T, Kaneko Y, et al. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J Immunol. 2005;174:2004–11.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science. 2000;288:2051–4.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 2013;339:971–5. doi:10.1126/science.1229568.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Saito Y, Iwamura H, Kaneko T, Ohnishi H, Murata Y, Okazawa H, et al. Regulation by SIRPα of dendritic cell homeostasis in lymphoid tissues. Blood. 2010;116:3517–25. doi:10.1182/blood-2010-03-277244.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Sato-Hashimoto M, Saito Y, Ohnishi H, Iwamura H, Kanazawa Y, Kaneko T, et al. Signal regulatory protein α regulates the homeostasis of T lymphocytes in the spleen. J Immunol. 2011;187:291–7. doi:10.4049/jimmunol.1100528.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, Philbrick W, et al. Transgenic expression of human signal regulatory protein alpha in Rag2−/−γc−/− mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci USA. 2011;108:13218–23. doi:10.1073/pnas.1109769108.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Takenaka K, Prasolava TK, Wang JCY, Mortin-Toth SM, Khalouei S, Gan OI, et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol. 2007;8:1313–23. doi:10.1038/ni1527.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Timms JF, Swanson KD, Marie-Cardine A, Raab M, Rudd CE, Schraven B, et al. SHPS-1 is a scaffold for assembling distinct adhesion-regulated multi-protein complexes in macrophages. Curr Biol. 1999;9:927–30.PubMedPubMedCentralCrossRefGoogle Scholar
  24. van Beek EM, Zarate JA, van Bruggen R, Schornagel K, Tool ATJ, Matozaki T, et al. SIRPα controls the activity of the phagocyte NADPH oxidase by restricting the expression of gp91(phox). Cell Rep. 2012;2:748–55. doi:10.1016/j.celrep.2012.08.027.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Wang L, Lu Y, Deng S, Zhang Y, Yang L, Guan Y, et al. SHPS-1 deficiency induces robust neuroprotection against experimental stroke by attenuating oxidative stress. J Neurochem. 2012;122:834–43. doi:10.1111/j.1471-4159.2012.07818.x.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Willingham SB, Volkmer J-P, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, et al. The CD47-signal regulatory protein alpha (SIRPα) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA. 2012;109:6662–7. doi:10.1073/pnas.1121623109.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Yamauchi T, Takenaka K, Urata S, Shima T, Kikushige Y, Tokuyama T, et al. Polymorphic Sirpa is the genetic determinant for NOD-based mouse lines to achieve efficient human cell engraftment. Blood. 2013;121:1316–25. doi:10.1182/blood-2012-06-440354.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Yanagita T, Murata Y, Tanaka D, Motegi S-I, Arai E, Daniwijaya EW, et al. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight. 2017;2:e89140. doi:10.1172/jci.insight.89140.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Yi T, Li J, Chen H, Wu J, An J, Xu Y, et al. Splenic dendritic cells survey red blood cells for missing self-CD47 to trigger adaptive immune responses. Immunity. 2015;43:764–75. doi:10.1016/j.immuni.2015.08.021.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobeJapan