Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Ralf-Peter Czekay
  • Tessa M. Simone
  • Paul J. HigginsEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101828


Historical Background

The temporal and spatial control of a complex extracellular proteolytic cascade regulates the fundamental processes of tissue remodeling, inflammation, thrombosis, and wound repair. Growth factor and cytokine-induced release of two plasminogen activators (PAs; urokinase-type PA, uPA; tissue-type PA, tPA) converts plasminogen to plasmin, a trypsin-like protease that in turn activates several matrix metalloproteinases to implement extracellular matrix (ECM) restructuring (Van den Steen et al. 2001). The broad substrate specificity of plasmin requires strict control of its activity which is mainly accomplished by several plasminogen...

This is a preview of subscription content, log in to check access.


  1. Berkenpas MB, Lawrence DA, Ginsburg D. Molecular evolution of plasminogen activator inhibitor-1 functional stability. EMBO J. 1995;14:2969–77.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Brown NJ. Therapeutic potential of plasminogen activator inhibitor-1 inhibitors. Ther Adv Cardiovasc Dis. 2010;4:315–24.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Carmeliet P, Kieckens L, Schoojans L, Ream B, Van Nuffelen A, Predergest G, et al. Plasminogen activator inhibitor-1 gene-deficient mice. I. Generation by homologous recombination and characterization. J Clin Invest. 2016;92:2746–55.CrossRefGoogle Scholar
  4. Cochran BJ, Croucher DR, Lobov S, Saunders DN, Ranson M. Dependence on endocytic receptor binding via a minimal binding motif underlies the differential prognostic profiles of SerpinE1 and SerpinB2 in cancer. J Biol Chem. 2011;286:24467–75.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Croucher DR, Saunders DN, Labov S, Ranson M. Revisiting the biological roles of PAI1 (SERPINB2) in cancer. Nat Rev Cancer. 2008;8:535–45.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Czekay R-P, Loskutoff DJ. Plasminogen activator inhibitors regulate cell adhesion through a uPAR-dependent mechanism. J Cell Physiol. 2009;220:655–63.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Czekay R-P, Wilkins-Port CE, Higgins SP, Freytag J, Overstreet JM, Klein RM et al. PAI-1: an integrator of cell signaling and migration. Int J Cell Biol. 2011;201: Article ID 562481. 9 pages.  https://doi.org/10.1155/2011/562481.
  8. Degryse B, Neels JG, Czekay R-P, Aertgeerts K, Kamikubo Y, Loskutoff DJ. The low density lipoprotein receptor-related protein is a motogenic receptor for plasminogen activator inhibitor-1. J Biol Chem. 2004;279:22595–604.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dellas C, Loskutoff DJ. Historical analysis of PAI-1 from its discovery to its potential role in cell motility and disease. Thromb Haemost. 2005;93:631–40.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Deng G, Curriden SA, Hu G, Czekay R-P, Loskutoff DJ. Plasminogen activator inhibitor-1 regulates cell adhesion by binding to the somatomedin B domain of vitronectin. J Cell Physiol. 2001;189:23–33.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dimova EY, Kietzmann T. Metabolic, hormonal and environmental regulation of plasminogen activator inhibitor-1 (PAI-1) expression: lessons from the liver. Thromb Haemost. 2008;100:992–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Duffy MJ. Uorkinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: from pilot to level 1 evidence cancer. Clin Chem. 2002;48:1194–7.PubMedPubMedCentralGoogle Scholar
  13. Fay WP, Parker AC, Condrey LR, Shapiro AD. Human plasminogen activator inhibitor-1 (PAI-1) deficiency: characterization of a large kindred with a null mutation in the PAI-1 gene. Blood. 1997;90:204–8.PubMedPubMedCentralGoogle Scholar
  14. Fearns C, Samad F, Loskutoff DJ. Synthesis and localization of PAI-1 in the vessel wall. In: Vadas M, Harlan J, editors. Vascular control of hemostasis, advances in vascular biology. Victoria: Gordon and Breach Publications; 1996. p. 207–26.Google Scholar
  15. Ghosh AK, Vaughan DE. PAI-1 in tissue fibrosis. J Cell Physiol. 2012;227:493–507.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Goldfinger LE, Hopkinson SB, deHart GW, Collawn S, Couchman JR, Jones JC. The a3 laminin subunit, a6b4 and a3b1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin. J Cell Sci. 1999;112:2615–29.PubMedPubMedCentralGoogle Scholar
  17. Gupta KK, Xu Z, Catellino FJ, Ploplis VA. Plasminogen activator inhibitor-1 stimulates macrophage activation through Toll-like Receptor-4. Biochem Biophys Res Commun. 2016;477:503–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ji Y, Weng Z, Fish P, Goyal N, Luo M, Myears SP, et al. Pharmacological targeting of plasminogen activator inhibitor-1 decreases vascular smooth muscle cell migration and neointima formation. Arterioscler Thromb Vasc Biol. 2016;36:2167–75.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Law RHP, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, et al. An overview of the serpin superfamily. Genome Biol. 2006;7:216.  https://doi.org/10.1186/gb-2006-7-5-216.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Providence KM, Higgins SP, Mullen A, Battista A, Samarakoon R, Higgins CE, et al. SERPINE1 (PAI-1) id desposited into keratinocyte migration “trails” and required for optimal monolayer wound repair. Arch Dermatol Res. 2008;300:303–10.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Schleef RR, Wagner NV, Loskutoff DJ. Detection of both type 1 and type 2 plasminogen activator inhibitors in human cells. J Cell Physiol. 1988;134:269–74.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Simone TM, Higgins SP, Higgins CE, Lennartz MR, Higgins PJ. Chemical antagonists of plasminogen activator inhibitor-1: mechanisms of action and therapeutic potential in vascular disease. J Mol Genet Med. 2014;8:3.  https://doi.org/10.4172/1747-0862.1000125.CrossRefGoogle Scholar
  23. Simone TM, Higgins SP, Archambeault J, Higgins CE, Ginnan RG, Singer H, et al. A small molecule PAI-1 functional inhibitor attenuates neointimal hyperplasia and vascular smooth muscle cell survival by promoting PAI-1 cleavage. Cell Signal. 2015;27:923–33.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Stefansson S, Muhammad S, Cheng XF, Battey FD, Strickland DK, Lawrence DA. Plasminogen activator inhibitor-1 contains a cryptic high affinity binding site for the low density lipoprotein receptor-related protein. J Biol Chem. 1998;273:6358–66.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Strickland DK, Gonias SL, Argraves WS. Diverse roles for the LDL receptor family. Trends Encrinol Metab. 2002;13:66–74.CrossRefGoogle Scholar
  26. Subramanian SV, Fitzgerald ML, Bernfield M. Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem. 1997;272:14713–20.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Toriseva M, Kähäri VM. Proteinases in cutaneous wound healing. Cell Mol Life Sci. 2009;66:203–24.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Van den Steen PE, Opdenakker G, Wormald MR, Dwek RA, Rudd PM. Matrix remodelling enzymes, the protease cascade and glycosylation. Biochim Biophys Acta. 2001;1528:61–73.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Wind T, Hansen M, Jensen JK, Andreasen PA. The molecular basis for anti-proteolytic and non-proteolytic functions of plasminogen activator inhibitor type-1: roles of the reactive centre loop, the shutter region, the flexible joint region and the small serpine fragment. Biol Chem. 2002;383:21–36.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ralf-Peter Czekay
    • 1
  • Tessa M. Simone
    • 2
  • Paul J. Higgins
    • 1
    Email author
  1. 1.Department of Regenerative and Cancer Cell BiologyAlbany Medical CollegeAlbanyUSA
  2. 2.Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterUSA