Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

PH Domain Leucine-Rich Repeat Protein Phosphatase (PHLPP)

  • Agnieszka T. Grzechnik
  • Alexandra C. Newton
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101823

Synonyms

Historical Background

In 1999, Shimuzu et al. identified a novel transcript that oscillated in a circadian-dependent manner in the rat suprachiasmatic nucleus (SCN), a bundle of neurons in the brain responsible for controlling the mammalian circadian clock (Shimizu et al. 1999). Thus, they named this gene product SCN circadian oscillatory protein (SCOP), but the function of the protein encoded by this gene was shrouded in mystery. Six years later, Newton and colleagues identified this same gene in a rational search for a serine/threonine phosphatase responsible for dephosphorylating and inactivating the pro-survival kinase, Akt (Gao et al. 2005). Upon agonist stimulation, Akt is recruited to the plasma membrane by its phosphoinositide-sensing pleckstrin homology (PH) domain, where it becomes phosphorylated by another PH domain-containing kinase, the phosphoinositide-dependent kinase-1 (PDK-1). Hypothesizing that a phosphatase that...

This is a preview of subscription content, log in to check access.

References

  1. Andreozzi F, Procopio C, Greco A, Mannino GC, Miele C, Raciti GA, et al. Increased levels of the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP)-1 in obese participants are associated with insulin resistance. Diabetologia. 2011;54(7):1879–87.CrossRefPubMedGoogle Scholar
  2. Bradley EW, Carpio LR, Westendorf JJ. Histone deacetylase 3 suppression increases PH domain and leucine-rich repeat phosphatase (Phlpp)1 expression in chondrocytes to suppress Akt signaling and matrix secretion. J Biol Chem. 2013;288(14):9572–82.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bradley EW, Carpio LR, McGee-Lawrence ME, Castillejo Becerra C, Amanatullah DF, Ta LE, et al. Phlpp1 facilitates post-traumatic osteoarthritis and is induced by inflammation and promoter demethylation in human osteoarthritis. Osteoarthr Cartil. 2015. doi:10.1016/j.joca.2015.12.014.CrossRefPubMedGoogle Scholar
  4. Brognard J, Sierecki E, Gao T, Newton AC. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell. 2007;25(6):917–31.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Chen M, Pratt CP, Zeeman ME, Schultz N, Taylor BS, O’Neill A, et al. Identification of PHLPP1 as a tumor suppressor reveals the role of feedback activation in PTEN-mutant prostate cancer progression. Cancer Cell. 2011;20(2):173–86.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cozzone D, Frojdo S, Disse E, Debard C, Laville M, Pirola L, et al. Isoform-specific defects of insulin stimulation of Akt/protein kinase B (PKB) in skeletal muscle cells from type 2 diabetic patients. Diabetologia. 2008;51(3):512–21.CrossRefPubMedGoogle Scholar
  7. Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell. 2005;18(1):13–24.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Gao T, Brognard J, Newton AC. The phosphatase PHLPP controls the cellular levels of protein kinase C. J Biol Chem. 2008;283(10):6300–11.CrossRefGoogle Scholar
  9. Li X, Stevens PD, Liu J, Yang H, Wang W, Wang C, et al. PHLPP is a negative regulator of RAF1, which reduces colorectal cancer cell motility and prevents tumor progression in mice. Gastroenterology. 2014;146(5):1301–12 .e1-10PubMedPubMedCentralCrossRefGoogle Scholar
  10. Liu J, Stevens PD, Li X, Schmidt MD, Gao T. PHLPP-mediated dephosphorylation of S6K1 inhibits protein translation and cell growth. Mol Cell Biol. 2011;31(24):4917–27.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Masubuchi S, Gao T, O’Neill A, Eckel-Mahan K, Newton AC, Sassone-Corsi P. Protein phosphatase PHLPP1 controls the light-induced resetting of the circadian clock. Proc Natl Acad Sci U S A. 2010;107(4):1642–7.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Matsumoto K, Uno I, Oshima Y, Ishikawa T. Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1982;79(7):2355–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Miyamoto S, Purcell NH, Smith JM, Gao T, Whittaker R, Huang K, et al. PHLPP-1 negatively regulates Akt activity and survival in the heart. Circ Res. 2010;107(4):476–84.PubMedPubMedCentralCrossRefGoogle Scholar
  14. O’Neill AK, Niederst MJ, Newton AC. Suppression of survival signalling pathways by the phosphatase PHLPP. The FEBS Journal. 2013;280(2):572–83.CrossRefPubMedGoogle Scholar
  15. Qiao M, Wang Y, Xu X, Lu J, Dong Y, Tao W, et al. Mst1 is an interacting protein that mediates PHLPPs’ induced apoptosis. Mol Cell. 2010;38(4):512–23.CrossRefPubMedGoogle Scholar
  16. Reyes G, Niederst M, Cohen-Katsenelson K, Stender JD, Kunkel MT, Chen M, et al. Pleckstrin homology domain leucine-rich repeat protein phosphatases set the amplitude of receptor tyrosine kinase output. Proc Natl Acad Sci U S A. 2014;111(38):E3957–65.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Russell M, Bradshaw-Rouse J, Markwardt D, Heideman W. Changes in gene expression in the Ras/adenylate cyclase system of Saccharomyces cerevisiae: correlation with cAMP levels and growth arrest. Mol Biol Cell. 1993;4(7):757–65.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Shimizu K, Okada M, Takano A, Nagai K. SCOP, a novel gene product expressed in a circadian manner in rat suprachiasmatic nucleus. FEBS Lett. 1999;458(3):363–9.CrossRefPubMedGoogle Scholar
  19. Sierecki E, Newton AC. Biochemical characterization of the phosphatase domain of the tumor suppressor PH domain leucine-rich repeat protein phosphatase. Biochemistry. 2014;53(24):3971–81.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Sierecki E, Sinko W, McCammon JA, Newton AC. Discovery of small molecule inhibitors of the PH domain leucine-rich repeat protein phosphatase (PHLPP) by chemical and virtual screening. J Med Chem. 2010;53(19):6899–911.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Biomedical Sciences Graduate ProgramUniversity of California San DiegoLa JollaUSA
  2. 2.Department of PharmacologyUniversity of California San DiegoSan DiegoUSA