Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

GRK5

  • Christopher Lowden
  • Hai-Ying Mary Cheng
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101792

Synonyms

Historical Background

Originally cloned in 1993 from human heart cDNA, G protein-coupled receptor kinase 5 (GRK5) is a serine/threonine kinase and the fifth member of the GRK family to be discovered (Kunapuli and Benovic 1993). Proteins of the GRK family are categorized into subgroups that are based upon kinase homology, amino acid sequence similarity, and tissue expression patterns. These subgroups are: the rhodopsin kinase subfamily (GRK1 and GRK7), the β-adrenergic receptor kinase (β-ARK) subfamily (GRK2 and GRK3), and the GRK4-like subfamily (GRK4, GRK5, and GRK6) (Nagayama et al. 1996; Xu et al. 2014).

Structure, Function, and Regulation

In humans, the Grk5 gene is located on chromosome 10q26.11 (Aken et al. 2016). The gene contains 16 exons and encodes a 590 amino acid–long protein with a molecular weight of ~67.7 kDa (Kunapuli and Benovic 1993). GRK5 exhibits high homology to the DrosophilaGPRK-2 and human IT11 proteins...
This is a preview of subscription content, log in to check access.

References

  1. Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, et al. The Ensembl gene annotation system. Database (Oxford). 2016.  https://doi.org/10.1093/database/baw093.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Carman CV, Som T, Kim CM, Benovic JL. Binding and phosphorylation of tubulin by G protein-coupled receptor kinases. J Biol Chem. 1998;273(32):20308–16.PubMedCrossRefGoogle Scholar
  3. Chakraborty PK, Zhang Y, Coomes AS, Kim WJ, Stupay R, Lynch LD, et al. G protein-coupled receptor kinase GRK5 phosphorylates moesin and regulates metastasis in prostate cancer. Cancer Res. 2014;74(13):3489–500.PubMedCrossRefGoogle Scholar
  4. Chen M, Philipp M, Wang J, Premont RT, Garrison TR, Caron MG, et al. G protein-coupled receptor kinases phosphorylate LRP6 in the Wnt pathway. J Biol Chem. 2009;284(50):35040–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Chen X, Zhu H, Yuan M, Fu J, Zhou Y, Ma L. G-protein-coupled receptor kinase 5 phosphorylates p53 and inhibits DNA damage-induced apoptosis. J Biol Chem. 2010;285(17):12823–30.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chen Y, Wang F, Long H, Chen Y, Wu Z, Ma L. GRK5 promotes F-actin bundling and targets bundles to membrane structures to control neuronal morphogenesis. J Cell Biol. 2011;194(6):905–20.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cheng S, Li L, He S, Liu J, Sun Y, He M, et al. GRK5 deficiency accelerates ß-amyloid accumulation in Tg2576 mice via impaired cholinergic activity. J Biol Chem. 2010;285(53):41541–8.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chuang TT, Paolucci L, De Blasi A. Inhibition of G protein-coupled receptor kinase subtypes by Ca2+/calmodulin. J Biol Chem. 1996;271(45):28691–6.PubMedCrossRefGoogle Scholar
  9. Dzimiri N, Muiya P, Andres E, Al-Halees Z. Differential functional expression of human myocardial G protein receptor kinases in left ventricular cardiac diseases. Eur J Pharmacol. 2004;489(3):167–77.PubMedCrossRefGoogle Scholar
  10. Fan J, Malik AB. Toll-like receptor-4 (TLR4) signaling augments chemokine-induced neutrophil migration by modulating cell surface expression of chemokine receptors. Nat Med. 2003;9(3):315–21.PubMedCrossRefGoogle Scholar
  11. Freeman JLR, De La Cruz EM, Pollard TD, Lefkowitz RJ, Pitcher JA. Regulation of G protein-coupled receptor kinase 5 (GRK5) by actin. J Biol Chem. 1998;273(32):20653–7.PubMedCrossRefGoogle Scholar
  12. Glück L, Loktev A, Moulédous L, Mollereau C, Law PY, Schulz S. Loss of morphine reward and dependence in mice lacking G protein-coupled receptor kinase 5. Biol Psychiatry. 2014;76(10):767–74.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gold JI, Martini JS, Hullmann J, Gao E, Chuprun JK, Lee L, et al. Nuclear translocation of cardiac G protein-coupled receptor kinase 5 downstream of select Gq-activating hypertrophic ligands is a calmodulin-dependent process. PLoS One. 2013;8(3):e57324.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Gupta H, Jain A, Saadi AV, Vasudevan TG, Hande MH, D'Souza SC, et al. Categorical complexities of Plasmodium falciparum malaria in individuals is associated with genetic variations in ADORA2A and GRK5 genes. Infect Genet Evol. 2015;34:188–99.PubMedCrossRefGoogle Scholar
  15. He M, Singh P, Cheng S, Zhang Q, Peng W, Ding X, et al. GRK5 deficiency leads to selective basal forebrain cholinergic neuronal vulnerability. Sci Rep. 2016;6:26116.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hullmann JE, Grisanti LA, Makarewich CA, Gao E, Gold JI, Chuprun JK, et al. GRK5-mediated exacerbation of pathological cardiac hypertrophy involves facilitation of nuclear NFAT activity. Circ Res. 2014;115(12):976–85.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ishizaka N, Alexander RW, Laursen JB, Kai H, Fukui T, Oppermann M, et al. G protein-coupled receptor kinase 5 in cultured vascular smooth muscle cells and rat aorta: Regulation by angiotensin II and hypertension. J Biol Chem. 1997;272(51):32482–8.PubMedCrossRefGoogle Scholar
  18. Islam KN, Bae JW, Gao E, Koch WJ. Regulation of nuclear factor κB (NF-κB) in the nucleus of cardiomyocytes by G protein-coupled receptor kinase 5 (GRK5). J Biol Chem. 2013;288(50):35683–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Johnson LR, Scott MGH, Pitcher JA. G protein-coupled receptor kinase 5 contains a DNA-binding nuclear localization sequence. Mol Cell Biol. 2004;24(23):10169–79.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Johnson LR, Robinson JD, Lester KN, Pitcher JA. Distinct structural features of G protein-coupled receptor kinase 5 (GRK5) regulate its nuclear localization and DNA-binding ability. PLoS One. 2013;8(5):e62508.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Kaur G, Kim J, Kaur R, Tan I, Bloch O, Sun MZ, et al. G-protein coupled receptor kinase (GRK)-5 regulates proliferation of glioblastoma-derived stem cells. J Clin Neurosci. 2013;20(7):1014–8.PubMedCrossRefGoogle Scholar
  22. Kim JI, Chakraborty P, Wang Z, Daaka Y. G-protein coupled receptor kinase 5 regulates prostate tumor growth. J Urol. 2012;187(1):322–9.PubMedGoogle Scholar
  23. Kunapuli P, Benovic JL. Cloning and expression of GRK5: a member of the G protein-coupled receptor kinase family. Proc Natl Acad Sci U S A. 1993;90(12):5588–92.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kunapuli P, Gurevich VV, Benovic JL. Phospholipid-stimulated autophosphorylation activates the G protein-coupled receptor kinase GRK5. J Biol Chem. 1994;269(14):10209–12.PubMedGoogle Scholar
  25. Liggett SB, Cresci S, Kelly RJ, Syed FM, Matkovich SJ, Hahn HS, et al. A GRK5 polymorphism that inhibits ß-adrenergic receptor signaling is protective in heart failure. Nat Med. 2008;14(5):510–7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Liu J, Rasul I, Sun Y, Wu G, Li L, Premont RT, et al. GRK5 deficiency leads to reduced hippocampal acetylcholine level via impaired presynaptic M2/M4 autoreceptor desensitization. J Biol Chem. 2009;284(29):19564–71.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Martini JS, Raake P, Vinge LE, DeGeorge Jr B, Chuprun JK, Harris DM, et al. Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc Natl Acad Sci U S A. 2008;105(34):12457–62.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Nagayama Y, Tanaka K, Hara T, Namba H, Yamashita S, Taniyama K, et al. Involvement of G protein-coupled receptor kinase 5 in homologous desensitization of the thyrotropin receptor. J Biol Chem. 1996;271(17):10143–8.PubMedCrossRefGoogle Scholar
  29. Packiriswamy N, Lee T, Raghavendra PB, Durairaj H, Wang H, Parameswaran N. G-protein-coupled receptor kinase-5 mediates inflammation but does not regulate cellular infiltration or bacterial load in a polymicrobial sepsis model in mice. J Innate Immun. 2013;5(4):401–3.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Packiriswamy N, Steury M, McCabe IC, Fitzgerald SD, Parameswaran N. Bacterial dose-dependent role of G protein-coupled receptor kinase 5 in Escherichia coli-induced pneumonia. Infect Immun. 2016;84(5):1633–41.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Patial S, Shahi S, Saini Y, Lee T, Packiriswamy N, Appledorn DM, et al. G-protein coupled receptor kinase 5 mediates lipopolysaccharide-induced NFκB activation in primary macrophages and modulates inflammation in vivo in mice. J Cell Physiol. 2011;226(5):1323–33.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Pitcher JA, Fredericks ZL, Carl Stone W, Premont RT, Stoffel RH, Koch WJ, et al. Phosphatidylinositol 4,5-bisphosphate (PIP2)-enhanced G protein- coupled receptor kinase (GRK) activity. Location, structure, and regulation of the PIP2 binding site distinguishes the GRK families. J Biol Chem. 1996;271(40):24907–13.PubMedCrossRefGoogle Scholar
  33. Premont RT, Koch WJ, Inglese J, Lefkowitz RJ. Identification, purification, and characterization of GRK5, a member of the family of G protein-coupled receptor kinases. J Biol Chem. 1994;269(9):6832–41.PubMedGoogle Scholar
  34. Pronin AN, Benovic JL. Regulation of the G protein-coupled receptor kinase GRK5 by protein kinase C. J Biol Chem. 1997;272(6):3806–12.PubMedCrossRefGoogle Scholar
  35. Pronin AN, Carman CV, Benovic JL. Structure-function analysis of G protein-coupled receptor kinase-5: Role of the carboxyl terminus in kinase regulation. J Biol Chem. 1998;273(47):31510–8.PubMedCrossRefGoogle Scholar
  36. Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A. Activation of NF-κB is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci U S A. 2001;98(12):6668–73.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Rockman HA, Choi D-U, Rahman NU, Akhter SA, Lefkowitz RJ, Koch WJ. Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. Proc Natl Acad Sci U S A. 1996;93(18):9954–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. So CH, Michal AM, Mashayekhi R, Benovic JL. G protein-coupled receptor kinase 5 phosphorylates nucleophosmin and regulates cell sensitivity to polo-like kinase 1 inhibition. J Biol Chem. 2012;287(21):17088–99.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Sorriento D, Ciccarelli M, Santulli G, Campanile A, Altobelli GG, Cimini V, et al. The G-protein-coupled receptor kinase 5 inhibits NFκB transcriptional activity by inducing nuclear accumulation of IκBα. Proc Natl Acad Sci U S A. 2008;105(46):17818–23.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Suo Z, Wu M, Citron BA, Wong GT, Festoff BW. Abnormality of G-protein-coupled receptor kinases at prodromal and early stages of Alzheimer’s disease: an association with early ß-amyloid accumulation. J Neurosci. 2004;24(13):3444–52.PubMedCrossRefGoogle Scholar
  41. Suo Z, Cox AA, Bartelli N, Rasul I, Festoff BW, Premont RT, et al. GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment. Neurobiol Aging. 2007;28(12):1873–88.PubMedCrossRefGoogle Scholar
  42. Xu H, Jiang X, Shen K, Fischer CC, Wedegaertner PB. The regulator of G protein signaling (RGS) domain of G protein-coupled receptor kinase 5 (GRK5) regulates plasma membrane localization and function. Mol Biol Cell. 2014;25(13):2105–15.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Zhang Y, Chen L, Shen G, Zhao Q, Shangguan L, He M. GRK5 dysfunction accelerates tau hyperphosphorylation in APP (swe) mice through impaired cholinergic activity. Neuroreport. 2014;25(7):542–7.PubMedGoogle Scholar
  44. Zhang Y, Shen GL, Shangguan LJ, Yu Y, He ML. Involvement of NFkappaB signaling in mediating the effects of GRK5 on neural stem cells. Brain Res. 2015;1608:31–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Toronto MississaugaMississaugaCanada
  2. 2.Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada