Skip to main content

DNAJB6

  • Reference work entry
  • First Online:
  • 70 Accesses

Synonyms

DJ4; DnaJ; HHDJ1; HSJ-2; HSJ2; LGMD1D; LGMD1E; MRJ; MSJ-1

Historical Background

Heat shock proteins were first identified in the late 1970s by Dr. Alfred Tissieres laboratory who noticed that when Drosophila cells in culture were exposed to 37 °C a new set of proteins were synthesized (Arrigo et al. 1980). These proteins have been identified as heat shock proteins (HSP) and play a role in a wide variety of biological processes. Heat shock proteins act as chaperones helping move various client proteins to different cellular compartments. They also ensure the client proteins are folded correctly, as well as aid in degradation of misfolded or damaged proteins (Mitra et al. 2009). Since then, many heat shock proteins have been identified, including DNAJB6. It was initially identified for its role in the development of the embryo and placenta (Hunter et al. 1999). Recently, however, its role in cancer and many other diseases has been investigated.

Structure and Isoforms of DNAJB6

He...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andrews JF et al. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ. Exp Cell Res. 2012;318(10):1086–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arrigo AP et al. Localization of the heat shock-induced proteins in Drosophila melanogaster tissue culture cells. Dev Biol. 1980;78(1):86–103.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya SD et al. Osteopontin regulates epithelial mesenchymal transition-associated growth of hepatocellular cancer in a mouse xenograft model. Ann Surg. 2012;255(2):319–25.

    Article  PubMed  Google Scholar 

  • Cheetham ME, Caplan AJ. Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones. 1998;3(1):28–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comerford KM et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 2002;62(12):3387–94.

    CAS  PubMed  Google Scholar 

  • Dai YS et al. The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment. Mol Cell Biol. 2005;25(22):9936–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Bock CE et al. Interaction between urokinase receptor and heat shock protein MRJ enhances cell adhesion. Int J Oncol. 2010;36(5):1155–63.

    CAS  PubMed  Google Scholar 

  • Durrenberger PF et al. DnaJB6 is present in the core of Lewy bodies and is highly up-regulated in parkinsonian astrocytes. J Neurosci Res. 2009;87(1):238–45.

    Article  CAS  PubMed  Google Scholar 

  • Gillis J et al. The DNAJB6 and DNAJB8 protein chaperones prevent intracellular aggregation of polyglutamine peptides. J Biol Chem. 2013;288(24):17225–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hageman J et al. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol Cell. 2010;37(3):355–69.

    Article  CAS  PubMed  Google Scholar 

  • Hanai R, Mashima K. Characterization of two isoforms of a human DnaJ homologue, HSJ2. Mol Biol Rep. 2003;30(3):149–53.

    Article  CAS  PubMed  Google Scholar 

  • Hunter PJ et al. Mrj encodes a DnaJ-related co-chaperone that is essential for murine placental development. Development. 1999;126(6):1247–58.

    CAS  PubMed  Google Scholar 

  • Hussein RM et al. Evaluation of the amyloid beta-GFP fusion protein as a model of amyloid beta peptides-mediated aggregation: a study of DNAJB6 chaperone. Front Mol Neurosci. 2015;8:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krishnamachary B et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res. 2003;63(5):1138–43.

    CAS  PubMed  Google Scholar 

  • Masson C et al. Interaction of the molecular chaperone DNAJB6 with growing amyloid-beta 42 (Aβ42) aggregates leads to sub-stoichiometric inhibition of amyloid formation. J Biol Chem. 2014;289(5):31066–76.

    Article  CAS  Google Scholar 

  • Menezes ME et al. DNAJB6 governs a novel regulatory loop determining Wnt/beta-catenin signalling activity. Biochem J. 2012;444(3):573–80.

    Article  PubMed  CAS  Google Scholar 

  • Mitra A et al. Large isoform of MRJ (DNAJB6) reduces malignant activity of breast cancer. Breast Cancer Res. 2008;10(2):R22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitra A et al. Multi-faceted role of HSP40 in cancer. Clin Exp Metastasis. 2009;26(6):559–67.

    Article  CAS  PubMed  Google Scholar 

  • Mitra A et al. DNAJB6 induces degradation of beta-catenin and causes partial reversal of mesenchymal phenotype. J Biol Chem. 2010;285(32):24686–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitra A et al. DNAJB6 chaperones PP2A mediated dephosphorylation of GSK3beta to downregulate beta-catenin transcription target, osteopontin. Oncogene. 2012a;31(41):4472–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitra A et al. Micro-RNA-632 downregulates DNAJB6 in breast cancer. Lab Investig. 2012b;92(9):1310–7.

    Article  PubMed  CAS  Google Scholar 

  • Molkentin JD. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res. 2004;63(3):467–75.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka K, Hata M. Mammalian HSP40/DNAJ homologs: cloning of novel cDNAs and a proposal for their classification and nomenclature. Cell Stress Chaperones. 2000;5(2):98–112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rose JM et al. Molecular chaperone-mediated rescue of mitophagy by a Parkin RING1 domain mutant. Hum Mol Genet. 2011;20(1):16–27.

    Article  CAS  PubMed  Google Scholar 

  • Ruggieri A et al. Complete loss of the DNAJB6 G/F domain and novel missense mutations cause distal-onset DNAJB6 myopathy. Acta Neuropathol Commun. 2015;3:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarparanta J et al. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet. 2012;44(4):450–5 .S451–452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993;72(6):971–83.

    Article  Google Scholar 

  • Varadarajan S et al. Review: Alzheimer’s amyloid β peptide associated free radical oxidative stress and neurotoxicity. J Struct Biol. 2000;130:184–208.

    Article  CAS  PubMed  Google Scholar 

  • Zhang TT et al. Overexpression of DNAJB6 promotes colorectal cancer cell invasion through an IQGAP1/ERK-dependent signaling pathway. Mol Carc. 2015;54:1205–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

NIH R01CA194048 grant to R.S.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev S. Samant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Weeks, S.E., Bawage, S., Shevde, L.A., Samant, R.S. (2018). DNAJB6. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101779

Download citation

Publish with us

Policies and ethics